ion conductances
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 1)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Vol 137 ◽  
pp. 97-105
Author(s):  
B.R.R. Boaretto ◽  
C. Manchein ◽  
T.L. Prado ◽  
S.R. Lopes

2018 ◽  
Vol 43 (11) ◽  
pp. 1186-1193 ◽  
Author(s):  
Christopher W. MacDonell ◽  
Phillip F. Gardiner

Motoneurons demonstrate adaptations in their physiological properties to alterations in chronic activity levels. The most consistent change that appears to result from endurance-type exercise training is the reduced excitatory current required to initiate and maintain rhythmic firing. While the precise mechanisms through which these neurons adapt to activity are currently unknown, evidence exists that adaptation may involve alterations in the expression of genes that code for membrane receptors, which can influence the responses of neurons to transmitters during activation. The influence of these adaptations may also extend to the resting condition, where ambient levels of neuroactive substances may influence ion conductances at rest, and thus result in the activation or inhibition of specific ion conductances that underlie the measurements of increased excitability that have been reported for motoneurons in the anesthetised state. We have applied motoneuron excitability and muscle unit contractile changes with endurance training to a mathematical computerized model of motor unit recruitment (Heckman and Binder 1991; J. Neurophysiol. 65(4):952–967). The results from the modelling exercise demonstrate increased task efficiency at relative levels of effort during a submaximal contraction. The physiological impact that nerve and muscle adaptations have on the neuromuscular system during standardized tasks seem to fit with reported changes in motor unit behaviour in trained human subjects.


2009 ◽  
Vol 47 (05) ◽  
Author(s):  
V Venglovecz ◽  
Z Rakonczay ◽  
P Hegyi ◽  
M Gray ◽  
B Argent

2006 ◽  
Vol 101 (4) ◽  
pp. 1228-1236 ◽  
Author(s):  
P. Gardiner ◽  
Y. Dai ◽  
C. J. Heckman

Evidence is presented that one locus of adaptation in the “neural adaptations to training” is at the level of the α-motoneurons. With increased voluntary activity, these neurons show evidence of dendrite restructuring, increased protein synthesis, increased axon transport of proteins, enhanced neuromuscular transmission dynamics, and changes in electrophysiological properties. The latter include hyperpolarization of the resting membrane potential and voltage threshold, increased rate of action potential development, and increased amplitude of the afterhyperpolarization following the action potential. Many of these changes demonstrate intensity-related adaptations and are in the opposite direction under conditions in which chronic activity is reduced. A five-compartment model of rat motoneurons that innervate fast and slow muscle fibers (termed “fast” and “slow” motoneurons in this paper), including 10 active ion conductances, was used to attempt to reproduce exercise training-induced adaptations in electrophysiological properties. The results suggest that adaptations in α-motoneurons with exercise training may involve alterations in ion conductances, which may, in turn, include changes in the gene expression of the ion channel subunits, which underlie these conductances. Interestingly, the acute neuromodulatory effects of monoamines on motoneuron properties, which would be a factor during acute exercise as these monoaminergic systems are activated, appear to be in the opposite direction to changes measured in endurance-trained motoneurons that are at rest. It may be that regular increases in motoneuronal excitability during exercise via these monoaminergic systems in fact render the motoneurons less excitable when at rest. More research is required to establish the relationships between exercise training, resting and exercise motoneuron excitability, ion channel modulation, and the effects of neuromodulators.


2004 ◽  
Vol 24 (5) ◽  
pp. 475-486 ◽  
Author(s):  
Göran E. Nilsson ◽  
Peter L. Lutz

While medical science has struggled to find ways to counteract anoxic brain damage with limited success, evolution has repeatedly solved this problem. The best-studied examples of anoxia-tolerant vertebrates are the crucian carp and some North American Freshwater turtles. These can survive anoxia for days to months, depending of temperature. Both animals successfully fight any major fall in brain ATP levels, but the strategies they use to accomplish this are quite divergent. The anoxic turtle suppresses brain activity to such a degree that it becomes virtually comatose. The underlying mechanisms involve closing down ion conductances and releasing GABA and adenosine. By contrast, the crucian carp remains active in anoxia, although it suppresses selected brain functions, and avoids lactate self-poisoning by producing an exotic anaerobic end-product. These animals provide unique models for studying anoxic survival mechanisms both on a molecular and physiological level.


Sign in / Sign up

Export Citation Format

Share Document