scholarly journals Active involvement of PKC for insulin-mediated rates of muscle protein synthesis in Zucker rats

2004 ◽  
Vol 286 (5) ◽  
pp. E753-E758 ◽  
Author(s):  
James D. Fluckey ◽  
Ronald N. Cortright ◽  
Edward Tapscott ◽  
Timothy Koves ◽  
Latasha Smith ◽  
...  

A recent report from our group demonstrated that insulin facilitates muscle protein synthesis in obese Zucker rats. The purpose of this study was to determine whether PKC, a probable modulator of insulin signal transduction and/or mRNA translation, has a role in this insulin-mediated anabolic response. In the first portion of the study, gastrocnemius muscles of lean and obese Zucker rats ( n = 5–7 for each phenotype) were bilaterally perfused with or without insulin to assess cytosolic and membrane PKC activity. Limbs perfused with insulin demonstrated greater PKC activity in both lean and obese Zucker rats ( P < 0.05) compared with no insulin, but overall activity was greater in obese animals (by ∼27% compared with lean, P < 0.05). To determine whether PKC plays a role in muscle protein synthesis, hindlimbs ( n = 6–8 for each phenotype) were bilaterally perfused with or without insulin and/or GF-109203X (GF; a PKC inhibitor). The presence of GF did not influence the rates of insulin-mediated protein synthesis in gastrocnemius muscle of lean Zucker rats. However, when obese rats were perfused with GF ( P < 0.05), the effect of insulin on elevating rates of protein synthesis was not observed. We also used phorbol 12-myristate 13-acetate (TPA, a PKC activator; n = 5–7 for each phenotype) with and without insulin to determine the effect of PKC activation on muscle protein synthesis. TPA alone did not elevate muscle protein synthesis in lean or obese rats. However, TPA plus insulin resulted in elevated rates of protein synthesis in both phenotypes that were similar to rates of insulin alone of obese rats. These results suggest that PKC is a modulator and is necessary, but not sufficient, for insulin-mediated protein anabolic responses in skeletal muscle.

2000 ◽  
Vol 279 (1) ◽  
pp. E182-E187 ◽  
Author(s):  
James D. Fluckey ◽  
Steven C. Pohnert ◽  
S. Greg Boyd ◽  
Ronald N. Cortright ◽  
Todd A. Trappe ◽  
...  

The obese Zucker rat is resistant to insulin for glucose disposal, but it is unknown whether this insulin resistance is accompanied by alterations of insulin-mediated muscle protein synthesis. We examined rates of muscle protein synthesis either with or without insulin in lean and obese Zucker rats with the use of a bilateral hindlimb preparation. Additional experiments examined insulin's effect on protein synthesis with or without rapamycin, an inhibitor of protein synthesis. Protein synthesis in red and white gastrocnemius was stimulated by insulin compared with control (no insulin) in obese ( n = 10, P < 0.05) but not in lean ( n = 10, P > 0.05) Zucker rats. In white gastrocnemius, rapamycin significantly reduced rates of protein synthesis compared with control in lean ( n = 6) and obese ( n = 6) rats; however, in red gastrocnemius, the attenuating effect of rapamycin occurred only in obese rats. The addition of insulin to rapamycin resulted in rates of synthesis that were similar to those for rapamycin alone for lean rats and to those for insulin alone (augmented) for obese rats in both tissues. Our results demonstrate that insulin enhances protein synthesis in muscle that is otherwise characterized as insulin resistant. Furthermore, rapamycin inhibits protein synthesis in muscle of obese Zucker rats; however, stimulation of protein synthesis by insulin is not via a rapamycin-sensitive pathway.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 670-670
Author(s):  
Alyssa Varanoske ◽  
Stephen Hennigar ◽  
Lee Margolis ◽  
Claire Berryman ◽  
Mahalakshmi Shankaran ◽  
...  

Abstract Objectives High protein (HP) diets during short-term energy restriction (ER) attenuate energy-mediated reductions in muscle protein synthesis (MPS). MPS-adaptive responses to HP diets during prolonged ER are not well described. This study examined the effects of prolonged ER and HP on MPS and the synthesis rates of numerous individual muscle proteins. Methods Female 6-wk-old obese Zucker (leprfa+/fa+, n = 48) rats were randomized to one of four diet groups for 10 weeks: ad libitum-standard protein (AL-SP; 14% protein), AL-HP (35% protein), ER-SP, and ER-HP (both fed 60% of intake of AL-SP). At the start of week 10, D2O was administered by intraperitoneal injection and isotopic equilibrium was maintained daily by providing D2O in drinking water. Rats were euthanized after 1 week of labeling, and mixed-MPS (gastrocnemius), absolute mixed-MPS (mixed-MPS x muscle protein content), proteome dynamics, and protein half-lives [rate/d (k) = –ln(1-f)/d, where f is mixed-MPS and t is time in days; t1/2 (days) = ln(2)/k] were quantified. Results Mixed-MPS was not altered by energy status and protein intake. Gastrocnemius mass was lower (P &lt; 0.001) in ER-fed rats than AL-fed rats and higher (P = 0.034) for AL-HP than AL-SP. As a result, absolute mixed-MPS was lower (P &lt; 0.005) in ER than AL, regardless of dietary protein. Absolute synthesis in 24 of 26 myofibrillar, 32 of 61 mitochondrial, and 55 of 60 cytoplasmic measured proteins were lower in ER than AL (P &lt; 0.05), regardless of dietary protein. The difference in absolute synthesis of myofibrillar, mitochondrial, and cytoplasmic proteins due to ER compared to AL was 28%, 16%, and 27%, respectively. Comparison of HP and SP within each energy state revealed lower turnover rates and prolonged half-lives for a majority of measured muscle proteins in HP than in SP in both ER and AL conditions (P &lt; 0.001). Conclusions Prolonged ER in obese Zucker rats exerted a strong suppressive effect on myofibrillar, mitochondrial, and cytoplasmic MPS, suggesting reduced protein accretion contributed to lower gastrocnemius mass in ER-fed rats. Lower turnover rates of most muscle proteins in HP-fed rats without reductions in protein pool size (i.e., tissue mass) suggests prolonged HP intake, independent of energy, may prolong muscle protein lifespan of in obese Zucker rats. Funding Sources Supported by USAMRDC; authors’ views not official U.S. Army or DoD policy.


1981 ◽  
Vol 241 (4) ◽  
pp. E321-E327 ◽  
Author(s):  
M. N. Goodman ◽  
M. A. McElaney ◽  
N. B. Ruderman

Previous studies have established that 16-wk-old nonobese and obese rats conserve body protein during prolonged starvation. To determine the basis for this, protein synthesis and degradation in skeletal muscle were evaluated in the isolated perfused hindquarters of these rats, in the fed state and when starved for 2, 5, 10, and 11 days. Rats aged 4 and 8 wk were used as a comparison. The results indicate that the response to starvation depends on several factors: the age of the rat, its degree of adiposity, and the duration of the fast. An early event in starvation was a decline in muscle protein synthesis. This occurred in all groups, albeit this reduction occurred more slowly in the older rats. A later response to starvation was an increase in muscle proteolysis. This occurred between 2 and 5 days in the 8-wk-old rats. In 16-wk-old rats it did not occur until between 5 and 10 days, and it was preceded by a period of decreased proteolysis. In 16-wk-old obese rats, a decrease in proteolysis persisted for upwards of 10 days and the secondary increase was not noted during the period of study. The data suggest that the ability of older and more obese rats to conserve body protein during starvation is due, in part, to a curtailment of muscle proteolysis. This adaptation seems to correlate with the availability of lipid fuels.


1991 ◽  
Vol 261 (5) ◽  
pp. E653-E660 ◽  
Author(s):  
S. K. Fried ◽  
I. J. Turkenkopf ◽  
I. J. Goldberg ◽  
M. H. Doolittle ◽  
T. G. Kirchgessner ◽  
...  

The mechanisms underlying the increased activity of lipoprotein lipase (LPL) in adipocytes of genetically obese Zucker rats was studied. Relative rates of LPL synthesis (percent of total protein synthesis) determined by biosynthetic labeling and specific immunoprecipitation were similar in isolated fat cells from lean and obese rats, in the absence or presence of insulin. Insulin stimulated LPL synthesis as a result of a general increase in protein synthesis, and this effect was more marked in the obese fat cells. Levels of LPL mRNA, as a percent of total RNA, were also similar in fat cells from lean and obese rats. In contrast, when the data are calculated on a per fat cell basis, rates of LPL synthesis per fat cell are ninefold higher in obese compared with lean cells, accounting for the increase in LPL activity per fat cell. Fat cells from lean and obese rats showed similar rates of binding and degradation of purified bovine milk 125I-labeled LPL per unit fat cell surface area. Thus, on a per cell basis, rates of LPL turnover are increased in enlarged Zucker rat adipocytes, but there is no specific abnormality in the cellular regulation of LPL. Increases in LPL activity in obese rat adipocytes are related to an overall hyperresponsiveness to insulin effects on protein synthesis.


2001 ◽  
Vol 11 (s1) ◽  
pp. S150-S163 ◽  
Author(s):  
Peter A. Farrell

Skeletal muscle proteins are constantly being synthesized and degraded, and the net balance between synthesis and degradation determines the resultant muscle mass. Biochemical pathways that control protein synthesis are complex, and the following must be considered: gene transcription, mRNA splicing, and transport to the cytoplasm; specific amino acyl-tRNA, messenger (mRNA), ribosomal (rRNA) availability; amino acid availability within the cell; the hormonal milieu; rates of mRNA translation; packaging in vesicles for some types of proteins; and post-translational processing such as glycation and phosphorylation/dephosphorylation. Each of these processes is responsive to the need for greater or lesser production of new proteins, and many states such as sepsis, uncontrolled diabetes, prolonged bed-rest, aging, chronic alcohol treatment, and starvation cause marked reductions in rates of skeletal muscle protein synthesis. In contrast, acute and chronic resistance exercise cause elevations in rates of muscle protein synthesis above rates found in nondiseased rested organisms, which are normally fed. Resistance exercise may be unique in this capacity. This chapter focuses on studies that have used exercise to elucidate mechanisms that explain elevations in rates of protein synthesis. Very few studies have investigated the effects of aging on these mechanisms; however, the literature that is available is reviewed.


2005 ◽  
Vol 288 (5) ◽  
pp. E914-E921 ◽  
Author(s):  
Jeffery Escobar ◽  
Jason W. Frank ◽  
Agus Suryawan ◽  
Hanh V. Nguyen ◽  
Scot R. Kimball ◽  
...  

Protein synthesis in skeletal muscle of adult rats increases in response to oral gavage of supraphysiological doses of leucine. However, the effect on protein synthesis of a physiological rise in plasma leucine has not been investigated in neonates, an anabolic population highly sensitive to amino acids and insulin. Therefore, in the current study, fasted pigs were infused intra-arterially with leucine (0, 200, or 400 μmol·kg−1·h−1), and protein synthesis was measured after 60 or 120 min. Protein synthesis was increased in muscle, but not in liver, at 60 min. At 120 min, however, protein synthesis returned to baseline levels in muscle but was reduced below baseline values in liver. The increase in protein synthesis in muscle was associated with increased plasma leucine of 1.5- to 3-fold and no change in plasma insulin. Leucine infusion for 120 min reduced plasma essential amino acid levels. Phosphorylation of eukaryotic initiation factor (eIF)-4E-binding protein-1 (4E-BP1), ribosomal protein (rp) S6 kinase, and rpS6 was increased, and the amount of eIF4E associated with its repressor 4E-BP1 was reduced after 60 and 120 min of leucine infusion. No change in these biomarkers of mRNA translation was observed in liver. Thus a physiological increase in plasma leucine stimulates protein synthesis in skeletal muscle of neonatal pigs in association with increased eIF4E availability for eIF4F assembly. This response appears to be insulin independent, substrate dependent, and tissue specific. The results suggest that the branched-chain amino acid leucine can act as a nutrient signal to stimulate protein synthesis in skeletal muscle of neonates.


2009 ◽  
Vol 296 (2) ◽  
pp. R326-R333 ◽  
Author(s):  
Adam J. Rose ◽  
Bruno Bisiani ◽  
Bodil Vistisen ◽  
Bente Kiens ◽  
Erik A. Richter

Protein synthesis in skeletal muscle is known to decrease during exercise, and it has been suggested that this may depend on the magnitude of the relative metabolic stress within the contracting muscle. To examine the mechanisms behind this, the effect of exercise intensity on skeletal muscle eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) phosphorylation, key components in the mRNA translation machinery, were examined together with AMP-activated protein kinase (AMPK) in healthy young men. Skeletal muscle eEF2 phosphorylation at Thr56 increased during exercise but was not influenced by exercise intensity, and was lower than rest 30 min after exercise. On the other hand, 4EBP1 phosphorylation at Thr37/46 decreased during exercise, and this decrease was greater at higher exercise intensities and was similar to rest 30 min after exercise. AMPK activity, as indexed by AMPK α-subunit phosphorylation at Thr172 and phosphorylation of the AMPK substrate ACCβ at Ser221, was higher with higher exercise intensities, and these indices were higher than rest after high-intensity exercise only. Using immunohistochemistry, it was shown that the increase in skeletal muscle eEF2 Thr56 phosphorylation was restricted to type I myofibers. Taken together, these data suggest that the depression of skeletal muscle protein synthesis with endurance-type exercise may be regulated at both initiation (i.e., 4EBP1) and elongation (i.e., eEF2) steps, with eEF2 phosphorylation contributing at all exercise intensities but 4EBP1 dephosphorylation contributing to a greater extent at high vs. low exercise intensities.


2002 ◽  
Vol 282 (2) ◽  
pp. E336-E347 ◽  
Author(s):  
Charles H. Lang ◽  
Robert A. Frost ◽  
Angus C. Nairn ◽  
David A. MacLean ◽  
Thomas C. Vary

This study examined potential mechanisms contributing to the inhibition of protein synthesis in skeletal muscle and heart after administration of tumor necrosis factor (TNF)-α. Rats had vascular catheters implanted, and TNF-α was infused continuously for 24 h. TNF-α decreased in vivo-determined rates of global protein synthesis in gastrocnemius (39%) and heart (25%). The TNF-α-induced decrease in protein synthesis in the gastrocnemius involved a reduction in the synthesis of both myofibrillar and sarcoplasmic proteins. To identify potential mechanisms responsible for regulating mRNA translation, we examined several eukaryotic initiation factors (eIFs) and elongation factors (eEFs). TNF-α decreased the activity of eIF-2B in muscle (39%) but not in heart. This diminished activity was not caused by a reduction in the content of eIF-2Bε or the content and phosphorylation state of eIF-2α. Skeletal muscle and heart from TNF-α-treated rats demonstrated 1) an increased binding of the translation repressor 4E-binding protein-1 (4E-BP1) with eIF-4E, 2) a decreased amount of eIF-4E associated with eIF-4G, and 3) a decreased content of the hyperphosphorylated γ-form of 4E-BP1. In contrast, the infusion of TNF-α did not alter the content of eEF-1α or eEF-2, or the phosphorylation state of eEF-2. In summary, these data suggest that TNF-α impairs skeletal muscle and heart protein synthesis, at least in part, by decreasing mRNA translational efficiency resulting from an impairment in translation initiation associated with alterations in eIF-4E availability.


2005 ◽  
Vol 289 (3) ◽  
pp. E382-E390 ◽  
Author(s):  
Ly Q. Hong-Brown ◽  
Anne M. Pruznak ◽  
Robert A. Frost ◽  
Thomas C. Vary ◽  
Charles H. Lang

The HIV protease inhibitor indinavir adversely impairs carbohydrate and lipid metabolism, whereas its influence on protein metabolism under in vivo conditions remains unknown. The present study tested the hypothesis that indinavir also decreases basal protein synthesis and impairs the anabolic response to insulin in skeletal muscle. Indinavir was infused intravenously for 4 h into conscious rats, at which time the homeostasis model assessment of insulin resistance was increased. Indinavir decreased muscle protein synthesis by 30%, and this reduction was due to impaired translational efficiency. To identify potential mechanisms responsible for regulating mRNA translation, several eukaryotic initiation factors (eIFs) were examined. Under basal fasted conditions, there was a redistribution of eIF4E from the active eIF4E·eIF4G complex to the inactive eIF4E·4E-BP1 complex, and this change was associated with a marked decrease in the phosphorylation of 4E-BP1 in muscle. Likewise, indinavir decreased constitutive phosphorylation of eIF4G and mTOR in muscle, but not S6K1 or the ribosomal protein S6. In contrast, the ability of a maximally stimulating dose of insulin to increase the phosphorylation of PKB, 4E-BP1, S6K1, or mTOR was not altered 20 min after intravenous injection. Indinavir increased mRNA expression of the ubiquitin ligase MuRF1, but the plasma concentration of 3-methylhistidine remained unaltered. These indinavir-induced changes were associated with a marked reduction in the plasma testosterone concentration but were independent of changes in plasma levels of IGF-I, corticosterone, TNF-α, or IL-6. In conclusion, indinavir acutely impairs basal protein synthesis and translation initiation in skeletal muscle but, in contrast to muscle glucose uptake, does not impair insulin-stimulated signaling of protein synthetic pathways.


2011 ◽  
Vol 300 (6) ◽  
pp. E986-E992 ◽  
Author(s):  
Sana Zargar ◽  
Tracy S. Moreira ◽  
Helena Samimi-Seisan ◽  
Senthure Jeganathan ◽  
Dhanshri Kakade ◽  
...  

Optimal skeletal muscle mass is vital to human health, because defects in muscle protein metabolism underlie or exacerbate human diseases. The mammalian target of rapamycin complex 1 is critical in the regulation of mRNA translation and protein synthesis. These functions are mediated in part by the ribosomal protein S6 kinase 1 (S6K1) through mechanisms that are poorly understood. The tumor suppressor programmed cell death 4 (PDCD4) has been identified as a novel substrate of S6K1. Here, we examined 1) the expression of PDCD4 in skeletal muscle and 2) its regulation by feed deprivation (FD) and refeeding. Male rats (∼100 g; n = 6) were subjected to FD for 48 h; some rats were refed for 2 h. FD suppressed muscle fractional rates of protein synthesis and Ser67 phosphorylation of PDCD4 (−50%) but increased PDCD4 abundance ( P < 0.05); refeeding reversed these changes ( P < 0.05). Consistent with these effects being regulated by S6K1, activation of this kinase was suppressed by FD (−91%, P < 0.05) but was increased by refeeding. Gavaging rats subjected to FD with a mixture of amino acids partially restored muscle fractional rates of protein synthesis and reduced PDCD4 abundance relative to FD. Finally, when myoblasts were grown in amino acid- and serum-free medium, phenylalanine incorporation into proteins in cells depleted of PDCD4 more than doubled the values in cells with a normal level of PDCD4 ( P < 0.0001). Thus feeding stimulates fractional protein synthesis in skeletal muscle in parallel with the reduction of the abundance of this mRNA translation inhibitor.


Sign in / Sign up

Export Citation Format

Share Document