Ketone bodies alter dinitrophenol-induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes

2007 ◽  
Vol 292 (5) ◽  
pp. E1325-E1332 ◽  
Author(s):  
Amélie Pelletier ◽  
Lise Coderre

In aerobic conditions, the heart preferentially oxidizes fatty acids. However, during metabolic stress, glucose becomes the major energy source, and enhanced glucose uptake has a protective effect on heart function and cardiomyocyte survival. Thus abnormal regulation of glucose uptake may contribute to the development of cardiac disease in diabetics. Ketone bodies are often elevated in poorly controlled diabetics and are associated with increased cellular oxidative stress. Thus we sought to determine the effect of the ketone body β-hydroxybutyrate (OHB) on cardiac glucose uptake during metabolic stress. We used 2,4-dinitrophenol (DNP), an uncoupler of the mitochondrial oxidative chain, to mimic hypoxia in cardiomyocytes. Our data demonstrated that chronic exposure to OHB provoked a concentration-dependent decrease of DNP action, resulting in 56% inhibition of DNP-mediated glucose uptake at 5 mM OHB. This was paralleled by a diminution of DNP-mediated AMP-activated protein kinase (AMPK) and p38 MAPK phosphorylation. Chronic exposure to OHB also increased reactive oxygen species (ROS) production by 1.9-fold compared with control cells. To further understand the role of ROS in OHB action, cardiomyocytes were incubated with H2O2. Our results demonstrated that this treatment diminished DNP-induced glucose uptake without altering activation of the AMPK/p38 MAPK signaling pathway. Incubation with the antioxidant N-acetylcysteine partially restored DNP-mediated glucose but not AMPK/p38 MAPK activation. In conclusion, these results suggest that ketone bodies, through inhibition of the AMPK/p38 MAPK signaling pathway and ROS overproduction, regulate DNP action and thus cardiac glucose uptake. Altered glucose uptake in hyperketonemic states during metabolic stress may contribute to diabetic cardiomyopathy.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiao-lu Wang ◽  
Liang Wang ◽  
Fo-lan Lin ◽  
Si-si Li ◽  
Ting-xuan Lin ◽  
...  

Copper/zinc superoxide dismutase (SOD1) can clear cisplatin- (CP-) induced excessive reactive oxygen species (ROS), but exogenous SOD1 cannot enter cells because of its low biomembrane permeability. Cell-penetrating peptides (CPPs) can rapidly cross plasma membranes. This study is aimed at identifying an efficient and stable CPP-SOD1 and investigating its effects on CP-induced nephrotoxicity. We recombined SOD1 with 14 different CPPs and purified them using an NTA-Ni2+ column. In in vitro experiments, CPPs-SOD1 cell membrane penetration ability and JNK/p38 MAPK signaling pathway were evaluated using Western blotting. ROS production, mitochondrial membrane potential (MMP), and cell apoptosis were determined using flow cytometry and immunofluorescence staining in VERO and HK-2 cells. For in vivo experiments, mice were administered PSF-SOD1 for 2 h before cotreatment with a single CP injection for an additional 4 days. Blood and kidney samples were collected for renal function assessment (creatinine, urea nitrogen, histopathology, TUNEL assay, and JNK/p38 MAPK signaling pathway). Compared with TAT-SOD1, we found that PSF-SOD1 is more efficient at crossing the cell membrane and is stable after transduction into cells. Pretreatment with PSF-SOD1 inhibited CP-induced apoptosis, ROS generation, and JNK/p38 MAPK activation and restored CP-induced MMP loss in VERO and HK-2 kidney cells. Treatment of mice with PSF-SOD1 inhibited CP-induced serum creatinine, blood urea nitrogen elevation, and JNK/p38 MAPK activation. H&E staining and TUNEL assay indicated that kidney tissue damage was alleviated following PSF-SOD1 pretreatment. Overall, PSF-SOD1 ameliorated CP-induced renal damage by partially reducing oxidative stress and cell apoptosis by regulating JNK/p38 MAPK signaling pathway and might be a better cytoprotective agent than TAT-SOD1.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li Liang ◽  
Xin Gu ◽  
Hai Ji Shen ◽  
Yu Heng Shi ◽  
Yao Li ◽  
...  

AimsObstructive sleep apnea (OSA) is a risk factor for steroid-resistant (SR) asthma. However, the underlying mechanism is not well defined. This study aimed to investigate how chronic intermittent hypoxia (CIH), the main pathophysiology of OSA, influenced the effects of glucocorticoids (GCs) on asthma.Main MethodsThe effects of dexamethasone (Dex) were determined using the ovalbumin (OVA)-challenged mouse model of asthma and transforming growth factor (TGF)-β treated airway smooth muscle cells (ASMCs), with or without CIH. The p38 MAPK signaling pathway activity was then detected in the mouse (n = 6) and ASMCs models (n = 6), which were both treated with the p38 MAPK inhibitor SB239063.Key FindingsUnder CIH, mouse pulmonary resistance value, inflammatory cells in bronchoalveolar lavage fluid (BALF), and inflammation scores increased in OVA-challenged combined with CIH exposure mice compared with OVA-challenged mice (p < 0.05). These indicators were similarly raised in the OVA + CIH + Dex group compared with the OVA + Dex group (P < 0.05). CIH exposure enhanced the activation of the p38 MAPK pathway, oxidative stress injury, and the expression of NF-κB both in lung tissue and ASMCs, which were reversed by treatment with Dex and SB239063. In the in vitro study, treatment with Dex and SB239063 decreased ASMCs proliferation induced by TGF-β combined with CIH and suppressed activation of the p38 MAPK pathway, oxidative stress injury, and NF-κB nuclear transcription (p < 0.05).SignificanceThese results indicated that CIH decreased GC sensitivity by activating the p38 MAPK signaling pathway.


2021 ◽  
Author(s):  
Jing Ma ◽  
Ranran Wang ◽  
Ting Chen ◽  
Shaowei Jiang ◽  
Ajing Xu

Abstract Parkinson’s disease (PD) is a common neurodegenerative disorder of the central nervous system. However, the pathogenetic mechanisms of PD are far from understood. The aim of this study was to determine the protective effect of baicalin in a Caenorhabditis elegans model of PD. C. elegans worms were stimulated for 24 h with 6-hydroxydopamine (6-OHDA, 50 mM) and treated with or without baicalin (1, 10, or 100 μM). At all tested concentrations, baicalin improved the reversal and omega turn behavioral phenotypes, as well as the survival, of 6-OHDA-stimulated worms. It also inhibited 6-OHDA-induced oxidative stress by decreasing malondialdehyde levels, increasing superoxide dismutase, glutathione reductase, catalase, and glutathione levels and up-regulating mRNA expression of the antioxidant-related genes sod-1, sod-2, sod-3, daf-2, and daf-16. Additionally, it significantly decreased the expression of the apoptosis-related gene ced-3 and increased that of the anti-apoptosis-related gene ced-9. The expression levels of cleaved caspase-3 and B-cell lymphoma 2 in 6-OHDA-treated worms were reversed by baicalin. Apoptosis was suppressed by 6-OHDA in loss-of-function strains via the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Furthermore, the apoptotic effects of 6-OHDA were blocked in sek-1 and pmk-1 mutants. Finally, the mRNA expression of sek-1 and pmk-1 and the protein expression of p38 MAPK and stress-activated protein kinase/extracellular signal-regulated kinase 1 were up-regulated by 6-OHDA and reversed by baicalin. Baicalin may protect against 6-OHDA injury by inhibiting apoptosis and decreasing oxidative stress through the p38 MAPK signaling pathway.


2012 ◽  
Vol 33 (12) ◽  
pp. 1500-1505 ◽  
Author(s):  
Yu Sun ◽  
Shusheng Tang ◽  
Xi Jin ◽  
Chaoming Zhang ◽  
Wenxia Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document