Regional uptake of meal fatty acids in humans

2003 ◽  
Vol 285 (6) ◽  
pp. E1282-E1288 ◽  
Author(s):  
Michael D. Jensen ◽  
Michael G. Sarr ◽  
Daniel A. Dumesic ◽  
Peter A. Southorn ◽  
James A. Levine

Two protocols were performed to study meal fatty acid metabolism. In protocol 1, 14 patients scheduled for elective intra-abdominal surgery (11 undergoing bariatric surgery for severe obesity) consumed a meal containing [3H]triolein in the evening before surgery. This allowed us to measure adipose tissue lipid specific activity (SA) in mesenteric and omental, deep and superficial abdominal subcutaneous adipose tissue. Intra-abdominal adipose tissue lipid SA was greater than subcutaneous lipid SA. There were no significant differences between mesenteric and omental or between deep and superficial abdominal subcutaneous adipose tissue. In protocol 2, meal fatty acid oxidation and uptake into subcutaneous and omental adipose tissue ([3H]triolein) were measured in six normal, healthy volunteers. Meal fatty acid oxidation (3H2O generation) plus that remaining in plasma (∼1%) plus uptake into upper body subcutaneous, lower body subcutaneous, and visceral fat allowed us to account for 98 ± 6% of meal fatty acids 24 h after meal ingestion. We conclude that omental fat is a good surrogate for visceral fat and that abdominal subcutaneous fat depots are comparable with regard to meal fatty acid metabolic studies. Using [3H]triolein, we were able to account for virtually 100% of meal fatty acids 24 h after meal ingestion. These results support the meal fatty acid tracer model as a way to study the metabolic fate of dietary fat.

Obesity ◽  
2014 ◽  
Vol 22 (9) ◽  
pp. 2032-2038 ◽  
Author(s):  
Teresa Auguet ◽  
Esther Guiu-Jurado ◽  
Alba Berlanga ◽  
Ximena Terra ◽  
Salomé Martinez ◽  
...  

1976 ◽  
Vol 51 (1) ◽  
pp. 107-110 ◽  
Author(s):  
N. E. Miller ◽  
O. D. Mjøs ◽  
M. F. Oliver

1. The mechanism whereby p-chlorophenoxyisobutyrate (CPIB) lowers plasma non-esterified fatty acid concentrations has been studied in dogs by measuring the associated changes in adipose tissue metabolism. 2. CPIB lowered arterial concentrations of non-esterified fatty acids during isoprenaline infusion by a mean value of 41%. 3. This was accompanied by a proportionate decrease (45%) in the release of non-esterified fatty acids from subcutaneous adipose tissue in situ, and by a lesser reduction (22%) in that of glycerol. 4. Adipose tissue blood flow was unchanged by CPIB. 5. These findings indicate that the lowering effect of CPIB on non-esterified fatty acid concentrations derives principally from decreased mobilization rather than from increased tissue uptake of the fatty acids, and that this reflects both inhibited lipolysis and enhanced re-esterification of the fatty acids in adipose tissue.


2010 ◽  
Vol 53 (1) ◽  
pp. 73-84 ◽  
Author(s):  
M. Furman ◽  
Š. Malovrh ◽  
A. Levart ◽  
M. Kovač

Abstract. The fatty acid composition of meat and subcutaneous adipose tissue of the indigenous Slovenian pig breed (Krškopolje, KP), which is raised extensively, was compared with that of commercial fatteners (CP) from intensive farms. Commercial fatteners were divided into three groups according to lean meat percentage: meaty, normal and fatty. The m. longissimus dorsi of Krškopolje pigs contained less C18:0 fatty acids than that of commercial fatteners and less C16:0 than that of the fatty group. The proportions of long chain fatty acids C20:4 n-6, C20:5 n-3 and C22:5 n-3 in the Krškopolje pigs and fatty groups were also significantly different. The highest proportion of essential C18:2 n-6 and C18:3 n-3 fatty acids were found in the meaty and normal groups. Intramuscular fat content of the m. longissimus dorsi did not differ between the Krškopolje pigs, and the fatty and normal groups. The Krškopolje pigs had the lowest proportion of saturated fatty acids (SFAs), while both the Krškopolje pigs and the fatty group have a lower proportion of polysaturated fatty acids (PUFAs) than the meaty group. The fatty group had a lower polyunsaturated : saturated fatty acid ratio than the meaty and normal groups. In the subcutaneous adipose tissue, Krškopolje pigs had the highest proportion of C18:1 n-9 and differed from the normal group in C18:0 content, from the fatty group in C16:1 n-7 and from the meaty and fatty groups in C18:2 n-6. Furthermore, the Krškopolje pigs had the highest monounsaturated fatty acids (MUFAs), and lower PUFAs and n-6 PUFAs proportions than the fatty group. The meaty group had a higher n-6 : n-3 PUFA ratio than the Krškopolje pigs.


1994 ◽  
Vol 86 (2) ◽  
pp. 177-184 ◽  
Author(s):  
A. Kurpad ◽  
K. Khan ◽  
A. G. Calder ◽  
S. Coppack ◽  
K. Frayn ◽  
...  

1. The effect of infusion of noradrenaline (0.42 μmol min−1 kg−1) on the exchange of non-esterified fatty acids, glycerol and other metabolites across subcutaneous abdominal adipose tissue was investigated in five healthy subjects using an arteriovenous catheterization technique and measurement of adipose tissue blood flow using the 133Xe clearance technique. At the same time, the net rate of fat oxidation in the whole body was assessed by indirect calorimetry, and the turnover of glycerol in the whole body and in subcutaneous adipose tissue was estimated using [5-2H]glycerol, which was administered as a primed constant infusion for 1 h before (basal turnover) noradrenaline administration and continued during the 1 h of noradrenaline infusion. 2. The noradrenaline infusion increased the plasma noradrenaline concentration from a basal value of 0.9 ± 0.1 to 12.6 ± 1.2 nmol/(mean ± SEM) at 60 min. It also increased the arterialized concentration of glycerol by 50% (basal value 81 ± 11/μmol/l−1) and that of plasma non-esterified fatty acids three-fold (basal value 357 ± 86 μmol/l). 3. Noradrenaline increased the net release of glycerol by adipose tissue three-fold and that of non-esterified fatty acids three- to four-fold. Although the ratio of non-esterified fatty acid to glycerol release by adipose tissue increased in all subjects from a mean value of 2.7 in the basal period to 3.6 and 3.9 at 50 and 60 min of the noradrenaline infusion, respectively (P < 0.02), at no time point did the ratio differ significantly from 3.0 4. Noradrenaline increased the estimated rate of appearance of glycerol in the whole body from a basal value of 1.5 ± 0.3 to 2.6 ± 0.3 μmol min−1 kg−1 body weight, and the net rate of triacylglycerol oxidation from 1.2 ± 0.1 to 1.7 ± 0.13 μmol min−1 kg−1. The enrichment of glycerol in venous blood draining adipose tissue was two-fold lower than that predicted from the net addition of glycerol to the blood in the basal period (P < 0.02). 5. This study provides a direct demonstration of a ‘hormone’ stimulating lipolysis in human adipose tissue in viva The effect of noradrenaline in significantly increasing the ratio of non-esterified fatty acid to glycerol release by adipose tissue may be partly explained by accumulation in adipose tissue of diacylglycerol, which is associated with release of non-esterified fatty acids but not glycerol. Finally, since the low enrichment of glycerol in venous blood draining adipose tissue cannot be entirely explained by the net addition of glycerol in adipose tissue, there must be exchange between enriched glycerol in blood and unenriched glycerol in adipose tissue. This raises questions about the accuracy of glycerol turnover studies, which are typically carried out over 1 h.


iScience ◽  
2021 ◽  
pp. 102434
Author(s):  
Winifred W. Yau ◽  
Kiraely Adam Wong ◽  
Jin Zhou ◽  
Nivetha Kanakaram Thimmukonda ◽  
Yajun Wu ◽  
...  

1987 ◽  
Vol 76 (1) ◽  
pp. 87-90 ◽  
Author(s):  
G. E. ANDERSEN ◽  
N. C. CHRISTENSEN ◽  
M. B. V. PETERSEN ◽  
K. B. JOHANSEN

Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 322
Author(s):  
Jae-Eun Song ◽  
Tiago C. Alves ◽  
Bernardo Stutz ◽  
Matija Šestan-Peša ◽  
Nicole Kilian ◽  
...  

In the presence of high abundance of exogenous fatty acids, cells either store fatty acids in lipid droplets or oxidize them in mitochondria. In this study, we aimed to explore a novel and direct role of mitochondrial fission in lipid homeostasis in HeLa cells. We observed the association between mitochondrial morphology and lipid droplet accumulation in response to high exogenous fatty acids. We inhibited mitochondrial fission by silencing dynamin-related protein 1(DRP1) and observed the shift in fatty acid storage-usage balance. Inhibition of mitochondrial fission resulted in an increase in fatty acid content of lipid droplets and a decrease in mitochondrial fatty acid oxidation. Next, we overexpressed carnitine palmitoyltransferase-1 (CPT1), a key mitochondrial protein in fatty acid oxidation, to further examine the relationship between mitochondrial fatty acid usage and mitochondrial morphology. Mitochondrial fission plays a role in distributing exogenous fatty acids. CPT1A controlled the respiratory rate of mitochondrial fatty acid oxidation but did not cause a shift in the distribution of fatty acids between mitochondria and lipid droplets. Our data reveals a novel function for mitochondrial fission in balancing exogenous fatty acids between usage and storage, assigning a role for mitochondrial dynamics in control of intracellular fuel utilization and partitioning.


Sign in / Sign up

Export Citation Format

Share Document