Different impacts of saturated and unsaturated free fatty acids on COX-2 expression in C2C12 myotubes

2009 ◽  
Vol 297 (6) ◽  
pp. E1291-E1303 ◽  
Author(s):  
Akito Kadotani ◽  
Yo Tsuchiya ◽  
Hiroyasu Hatakeyama ◽  
Hideki Katagiri ◽  
Makoto Kanzaki

In skeletal muscle, saturated free fatty acids (FFAs) act as proinflammatory stimuli, and cyclooxygenase-2 (COX-2) is a pro/anti-inflammatory enzyme induced at sites of inflammation, which contributes to prostaglandin production. However, little is known about the regulation of COX-2 expression and its responses to FFAs in skeletal muscle. Herein, we examined the effects of saturated and unsaturated FFAs, including a recently identified lipokine (lipid hormone derived from adipocytes), palmitoleate, on COX-2 expression in C2C12 myotubes as a skeletal muscle model. Exposure of myotubes to saturated FFAs [palmitate (16:0) and stearate (18:0)], but not to unsaturated FFAs [palmitoleate (16:1), oleate (18:1), and linoleate (18:2)], led to a slow-onset induction of COX-2 expression and subsequent prostaglandin E2 production via mechanisms involving the p38 MAPK and NF-κB but not the PKCθ signaling cascades. Pharmacological modulation of mitochondrial oxidative function failed to interfere with COX-2 expression, suggesting the mitochondrial overload/excessive β-oxidation contribution to this event to be minimal. On the contrary, unsaturated FFAs appeared to effectively antagonize palmitate-induced COX-2 expression with markedly different potencies (linoleate > oleate > palmitoleate), being highly associated with the suppressive profile of each unsaturated FFA toward palmitate-evoked intracellular signals, including p38, JNK, ERK1/2 MAPKs, and PKCθ, as well as IκB degradation. In addition, our data suggest little involvement of PPAR in the protective actions of unsaturated FFAs against palmitate-induced COX-2 expression. No direct contribution of the increased COX-2 activity in generating palmitate-induced insulin resistance was detected, at least in terms of insulin-responsive Akt phosphorylation and GLUT4 translocation. Taken together, our data provide a novel insight into the molecular mechanisms responsible for the FFA-induced COX-2 expression in skeletal muscle and raise the possibility that, in skeletal myocytes, COX-2 and its product prostaglandins may play an important role in the complex inflammation responses caused by elevated FFAs, for example, in the diabetic state.

Endocrinology ◽  
2011 ◽  
Vol 152 (6) ◽  
pp. 2206-2218 ◽  
Author(s):  
Gong Peng ◽  
Linghai Li ◽  
Yanbo Liu ◽  
Jing Pu ◽  
Shuyan Zhang ◽  
...  

Pathological elevation of plasma fatty acids reduces insulin sensitivity. Although several regulation pathways have been reported, the molecular mechanisms of insulin sensitivity remain elusive, especially in skeletal muscle where most glucose is consumed. This study focuses on how two major dietary fatty acids affect insulin signaling in skeletal muscle cells. Palmitic acid (PA) not only reduced insulin-stimulated phosphorylation of Akt but also induced endoplasmic reticulum (ER) expansion and ER stress. Relieving ER stress using 4-phenyl butyric acid blocked PA-mediated protein kinase R-like ER kinase phosphorylation and ER expansion and reversed the inhibitory effect of PA on insulin-stimulated Akt phosphorylation. Importantly, oleic acid (OA) could also recover PA-reduced Akt phosphorylation and abolish both PA-mediated ER expansion and ER stress. The competition between these two fatty acids was further verified in rat skeletal muscle using venous fatty acid infusion. 3H-labeled PA was converted mainly to active lipids (phospholipids and diacylglycerol) in the absence of OA, but to triacylglycerol in the presence of OA. Subcellular triacylglycerol and adipocyte differentiation-related protein from PA-treated cells cofractionated with the ER in the absence of OA but switched to the low-density fraction in the presence of OA. Taken together, these data suggest that the PA-mediated lipid composition and localization may cause ER expansion and consequently cause ER stress and insulin resistance in skeletal muscle.


2009 ◽  
Vol 297 (5) ◽  
pp. 1124-1132 ◽  
Author(s):  
Michael R. Morissette ◽  
Stuart A. Cook ◽  
Cattleya Buranasombati ◽  
Michael A. Rosenberg ◽  
Anthony Rosenzweig

Myostatin is a highly conserved negative regulator of skeletal muscle growth. Loss of functional myostatin in cattle, mice, sheep, dogs, and humans results in increased muscle mass. The molecular mechanisms responsible for this increase in muscle growth are not fully understood. Previously, we have reported that phenylephrine-induced cardiac muscle growth and Akt activation are enhanced in myostatin knockout mice compared with controls. Here we report that skeletal muscle from myostatin knockout mice show increased Akt protein expression and overall activity at baseline secondary to an increase in Akt mRNA. We examined the functional role of myostatin modulation of Akt in C2C12 myotubes, a well-established in vitro model of skeletal muscle hypertrophy. Adenoviral overexpression of myostatin attenuated the insulin-like growth factor-I (IGF-I)-mediated increase in myotube diameter, as well as IGF-I-stimulated Akt phosphorylation. Inhibition of myostatin by overexpression of the NH2-terminal portion of myostatin was sufficient to increase myotube diameter and Akt phosphorylation. Coexpression of myostatin and constitutively active Akt (myr-Akt) restored the increase in myotube diameter. Conversely, expression of dominant negative Akt (dn-Akt) with the inhibitory myostatin propeptide blocked the increase in myotube diameter. Of note, ribosomal protein S6 phosphorylation and atrogin-1/muscle atrophy F box mRNA were increased in skeletal muscle from myostain knockout mice. Together, these data suggest myostatin regulates muscle growth at least in part through regulation of Akt.


2018 ◽  
Vol 50 (4) ◽  
pp. 1574-1584 ◽  
Author(s):  
Xiu-ying Yang ◽  
Margaret C.L. Tse ◽  
Xiang Hu ◽  
Wei-hua Jia ◽  
Guan-hua Du ◽  
...  

Background/Aims: Fibronectin type III domain-containing protein 5 (FNDC5), also known as irisin, is a myokine secreted from muscle in response to exercise. However, the molecular mechanisms that regulate FNDC5 expression and the functional significance of irisn in skeletal muscle remain unknown. In this study, we explored the potential pathways that induce FNDC5 expression and delineated the metabolic effects of irisin on skeletal muscle. Methods: C2C12 myotubes were treated with drugs at various concentrations and durations. The expression and activation of genes were measured by real-time polymerase chain reaction (qRT-PCR) and Western blotting. Oxidative phosphorylation was quantified by measuring the oxygen consumption rate (OCR). Results: We found that the exercise-mimicking treatment (cAMP, forskolin and isoproterenol) increased Fndc5 expression in C2C12 myotubes. CREB over-expressed C2C12 myotubes displayed higher Fndc5 expression. CREB over-expression also promoted peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) expression. PGC-1α-induced Fndc5 expression was blocked when the dominant negative form of CREB (S133A) was present. PGC-1α mutation (S570A) also decreased Fndc5 expression. Immunoprecipitation showed that overexpressed PGC-1α complexed with CREB in HEK293 cells. C2C12 myotubes treated with forskolin also increased endogenous CREB and PGC-1α binding. Functionally, irisin treatment increased mitochondrial respiration, enhanced ATP production, promoted fatty acid oxidation but decreased glycolysis in myotubes. Conclusion: Our observation indicates that cAMP-mediated PGC-1α/CREB interaction triggers Fndc5 expression, which acts as an autocrine/paracrine to shape the metabolic phenotype of myotubes.


2006 ◽  
Vol 291 (3) ◽  
pp. E666-E674 ◽  
Author(s):  
Charles H. Lang

Elevations in free fatty acids (FFAs) impair glucose uptake in skeletal muscle. However, there is no information pertaining to the effect of elevated circulating lipids on either basal protein synthesis or the anabolic effects of leucine and insulin-like growth factor I (IGF-I). In chronically catheterized conscious rats, the short-term elevation of plasma FFAs by the 5-h infusion of heparin plus Intralipid decreased muscle protein synthesis by ∼25% under basal conditions. Lipid infusion was associated with a redistribution of eukaryotic initiation factor (eIF)4E from the active eIF4E·eIF4G complex to the inactive eIF4E·4E-BP1 complex. This shift was associated with a decreased phosphorylation of eIF4G but not 4E-BP1. Lipid infusion did not significantly alter either the total amount or phosphorylation state of mTOR, TSC2, S6K1, or the ribosomal protein S6 under basal conditions. In control rats, oral leucine increased muscle protein synthesis. This anabolic response was not impaired by lipid infusion, and no defects in signal transduction pathways regulating translation initiation were detected. In separate rats that received a bolus injection of IGF-I, lipid infusion attenuated the normal redistribution of eIF4E from the active to inactive complex and largely prevented the increased phosphorylation of 4E-BP1, eIF4G, S6K1, and S6. This IGF-I resistance was associated with enhanced Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1). These data indicate that the short-term elevation of plasma FFAs impairs basal protein synthesis in muscle by altering eIF4E availability, and this defect may be related to impaired phosphorylation of eIF4G, not 4E-BP1. Moreover, hyperlipidemia impairs IGF-I action but does not produce leucine resistance in skeletal muscle.


Diabetes ◽  
1999 ◽  
Vol 48 (2) ◽  
pp. 358-364 ◽  
Author(s):  
M. Roden ◽  
M. Krssak ◽  
H. Stingl ◽  
S. Gruber ◽  
A. Hofer ◽  
...  

2010 ◽  
Vol 298 (1) ◽  
pp. F125-F132 ◽  
Author(s):  
Edgar A. Jaimes ◽  
Ping Hua ◽  
Run-Xia Tian ◽  
Leopoldo Raij

Glomerular endothelial cells (GEC) are strategically situated within the capillary loop and adjacent to the glomerular mesangium. GEC serve as targets of metabolic, biochemical, and hemodynamic signals that regulate the glomerular microcirculation. Unequivocally, hyperglycemia, hypertension, and the local renin-angiotensin system partake in the initiation and progression of diabetic nephropathy (DN). Whether free fatty acids (FFA) and reactive oxygen species (ROS) that have been associated with the endothelial dysfunction of diabetic macrovascular disease also contribute to DN is not known. Since endothelial cells from different organs and from different species may display different phenotypes, we employed human GEC to investigate the effect of high glucose (22.5 mmol/l), FFA (800 μmol/l), and angiotensin II (ANG II; 10−7 mol/l) on the genesis of ROS and their effects on endothelial nitric oxide synthase (eNOS), cyclooxygenase-2 (COX-2), and the synthesis of prostaglandins (PGs). We demonstrated that high glucose but not high FFA increased the expression of a dysfunctional eNOS as well as increased ROS from NADPH oxidase (100%) and likely from uncoupled eNOS. ANG II also induced ROS from NADPH oxidase. High glucose and ANG II upregulated (100%) COX-2 via ROS and significantly increased the synthesis of prostacyclin (PGI2) by 300%. In contrast, FFA did not upregulate COX-2 but increased PGI2 (500%). These novel studies are the first in human GEC that characterize the differential role of FFA, hyperglycemia, and ANG II on the genesis of ROS, COX-2, and PGs and their interplay in the early stages of hyperglcyemia.


2005 ◽  
Vol 280 (43) ◽  
pp. 35983-35991 ◽  
Author(s):  
Tara M. D'Eon ◽  
Sandra C. Souza ◽  
Mark Aronovitz ◽  
Martin S. Obin ◽  
Susan K. Fried ◽  
...  

Menopause is associated with increased adiposity and greater risk of metabolic disease. In the ovariectomized (OVX) rodent model of menopause, increased adiposity is prevented by estrogen (E2) replacement, reflecting both anorexigenic and potentially metabolic actions of E2. To elucidate metabolic and molecular mechanisms by which E2 regulates fat storage and fat mobilization independently of reduced energy intake, C57 BL/6 mice were ovariectomized, randomized to estrogen (OVX-E2) or control pellet implants (OVX-C), and pairfed for 40 days. E2 treatment was associated with reduced adipose mass and adipocyte size and down-regulation of lipogenic genes in adipocytes under the control of sterol-regulatory element-binding protein 1c. Adipocytes of OVX-E2 mice contained >3-fold more perilipin protein than adipocytes of pairfed control (OVX) mice, and this difference was associated with enhanced ex vivo lipolytic response to catecholamines and with greater levels of serum-free fatty acids following fasting. As in adipose tissue, E2 decreased the expression of lipogenic genes in liver and skeletal muscle. In the latter, E2 appears to promote the partitioning of free fatty acids toward oxidation and away from triglyceride storage by up-regulating the expression of peroxisome proliferation activator receptor-δ and its downstream targets and also by directly and rapidly activating AMP-activated protein kinase. Thus, novel genomic and non-genomic actions of E2 promote leanness in OVX mice independently of reduced energy intake.


Sign in / Sign up

Export Citation Format

Share Document