Manipulation of dietary carbohydrate and muscle glycogen affects glucose uptake during exercise when fat oxidation is impaired by β-adrenergic blockade

2004 ◽  
Vol 287 (6) ◽  
pp. E1195-E1201 ◽  
Author(s):  
Theodore W. Zderic ◽  
Simon Schenk ◽  
Christopher J. Davidson ◽  
Lauri O. Byerley ◽  
Edward F. Coyle

We have recently reported that, during moderate intensity exercise, low muscle glycogen concentration and utilization caused by a high-fat diet is associated with a marked increase in fat oxidation with no effect on plasma glucose uptake (Rd glucose). It is our hypothesis that this increase in fat oxidation compensates for low muscle glycogen, thus preventing an increase in Rd glucose. Therefore, the purpose of this study was to determine whether low muscle glycogen availability increases Rd glucose under conditions of impaired fat oxidation. Six cyclists exercised at 50% peak O2 consumption (V̇o2 peak) for 1 h after 2 days on either a high-fat (HF, 60% fat, 24% carbohydrate) or control (CON, 22% fat, 65% carbohydrate) diet to manipulate muscle glycogen to low and normal levels, respectively. Two hours before the start of exercise, subjects ingested 80 mg of propanolol (βB), a nonselective β-adrenergic receptor blocker, to impair fat oxidation during exercise. HF significantly decreased calculated muscle glycogen oxidation ( P < 0.05), and this decrease was partly compensated for by an increase in fat oxidation ( P < 0.05), accompanied by an increase in whole body lipolysis ( P < 0.05), despite the presence of βB. Although HF increased fat oxidation, plasma glucose appearance rate, Rd glucose, and glucose clearance rate were also significantly increased by 13, 15, and 26%, respectively (all P < 0.05). In conclusion, when lipolysis and fat oxidation are impaired, in this case by βB, fat oxidation cannot completely compensate for a reduction in muscle glycogen utilization, and consequently plasma glucose turnover increases. These findings suggest that there is a hierarchy of substrate compensation for reduced muscle glycogen availability after a high-fat, low-carbohydrate diet, with fat being the primary and plasma glucose the secondary compensatory substrate. This apparent hierarchy likely serves to protect against hypoglycemia when endogenous glucose availability is low.

2004 ◽  
Vol 97 (6) ◽  
pp. 2275-2283 ◽  
Author(s):  
Melissa J. Arkinstall ◽  
Clinton R. Bruce ◽  
Sally A. Clark ◽  
Caroline A. Rickards ◽  
Louise M. Burke ◽  
...  

To date, the results of studies that have examined the effects of altering preexercise muscle glycogen content and exercise intensity on endogenous carbohydrate oxidation are equivocal. Differences in the training status of subjects between investigations may, in part, explain these inconsistent findings. Accordingly, we determined the relative effects of exercise intensity and carbohydrate availability on patterns of fuel utilization in the same subjects who performed a random order of four 60-min rides, two at 45% and two at 70% of peak O2 uptake (V̇o2 peak), after exercise-diet intervention to manipulate muscle glycogen content. Preexercise muscle glycogen content was 596 ± 43 and 202 ± 21 mmol/kg dry mass ( P < 0.001) for high-glycogen (HG) and low-glycogen (LG) conditions, respectively. Respiratory exchange ratio was higher for HG than LG during exercise at both 45% (0.85 ± 0.01 vs. 0.74 ± 0.01; P < 0.001) and 70% (0.90 ± 0.01 vs. 0.79 ± 0.01; P < 0.001) of V̇o2 peak. The contribution of whole body muscle glycogen oxidation to energy expenditure differed between LG and HG for exercise at both 45% (5 ± 2 vs. 45 ± 5%; P < 0.001) and 70% (25 ± 3 vs. 60 ± 3%; P < 0.001) of V̇o2 peak. Yet, despite marked differences in preexercise muscle glycogen content and its subsequent utilization, rates of plasma glucose disappearance were similar under all conditions. We conclude that, in moderately trained individuals, muscle glycogen availability (low vs. high) does not influence rates of plasma glucose disposal during either low- or moderate-intensity exercise.


2002 ◽  
Vol 93 (5) ◽  
pp. 1797-1805 ◽  
Author(s):  
Jørn W. Helge ◽  
Peter W. Watt ◽  
Erik A. Richter ◽  
Michael J. Rennie ◽  
Bente Kiens

We tested the hypothesis that a shift to carbohydrate diet after prolonged adaptation to fat diet would lead to decreased glucose uptake and impaired muscle glycogen breakdown during exercise compared with ingestion of a carbohydrate diet all along. We studied 13 untrained men; 7 consumed a high-fat (Fat-CHO; 62% fat, 21% carbohydrate) and 6 a high-carbohydrate diet (CHO; 20% fat, 65% carbohydrate) for 7 wk, and thereafter both groups consumed the carbohydrate diet for an eighth week. Training was performed throughout. After 8 wk, during 60 min of exercise (71 ± 1% pretraining maximal oxygen uptake) average leg glucose uptake (1.00 ± 0.07 vs. 1.55 ± 0.21 mmol/min) was lower ( P < 0.05) in Fat-CHO than in CHO. The rate of muscle glycogen breakdown was similar (4.4 ± 0.5 vs. 4.2 ± 0.7 mmol · min−1 · kg dry wt−1) despite a significantly higher preexercise glycogen concentration (872 ± 59 vs. 688 ± 43 mmol/kg dry wt) in Fat-CHO than in CHO. In conclusion, shift to carbohydrate diet after prolonged adaptation to fat diet and training causes increased resting muscle glycogen levels but impaired leg glucose uptake and similar muscle glycogen breakdown, despite higher resting levels, compared with when the carbohydrate diet is consumed throughout training.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 155
Author(s):  
Camila L. P. Oliveira ◽  
Normand G. Boulé ◽  
Aloys Berg ◽  
Arya M. Sharma ◽  
Sarah A. Elliott ◽  
...  

The aim of this study was to compare the impact of a high-protein meal replacement (HP-MR) versus a control (CON) breakfast on exercise metabolism. In this acute, randomized controlled, cross-over study, participants were allocated into two isocaloric arms: (a) HP-MR: 30% carbohydrate, 43% protein, and 27% fat; (b) CON: 55% carbohydrate, 15% protein, and 30% fat. Following breakfast, participants performed a moderate-intensity aerobic exercise while inside a whole-body calorimetry unit. Energy expenditure, macronutrient oxidation, appetite sensations, and metabolic blood markers were assessed. Forty-three healthy, normal-weight adults (24 males) participated. Compared to the CON breakfast, the HP-MR produced higher fat oxidation (1.07 ± 0.33 g/session; p = 0.003) and lower carbohydrate oxidation (−2.32 ± 0.98 g/session; p = 0.023) and respiratory exchange ratio (−0.01 ± 0.00; p = 0.003) during exercise. After exercise, increases in hunger were lower during the HP-MR condition. Changes in blood markers from the fasting state to post-exercise during the HP-MR condition were greater for insulin, peptide tyrosine-tyrosine, and glucagon-like peptide 1, and lower for low-density lipoprotein cholesterol, triglyceride, and glycerol. Our primary findings were that an HP-MR produced higher fat oxidation during the exercise session, suppression of hunger, and improved metabolic profile after it.


Aging Cell ◽  
2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Carolyn Chee ◽  
Chris E. Shannon ◽  
Aisling Burns ◽  
Anna L. Selby ◽  
Daniel Wilkinson ◽  
...  

1997 ◽  
Vol 272 (1) ◽  
pp. E147-E154 ◽  
Author(s):  
A. P. Rocchini ◽  
P. Marker ◽  
T. Cervenka

The current study evaluated both the time course of insulin resistance associated with feeding dogs a high-fat diet and the relationship between the development of insulin resistance and the increase in blood pressure that also occurs. Twelve adult mongrel dogs were chronically instrumented and randomly assigned to either a control diet group (n = 4) or a high-fat diet group (n = 8). Insulin resistance was assessed by a weekly, single-dose (2 mU.kg-1.min-1) euglycemic-hyperinsulinemic clamp on all dogs. Feeding dogs a high-fat diet was associated with a 3.7 +/- 0.5 kg increase in body weight, a 20 +/- 4 mmHg increase in mean blood pressure, a reduction in insulin-mediated glucose uptake [(in mumol-kg-1.min-1) decreasing from 72 +/- 6 before to 49 +/- 7 at 1 wk, 29 +/- 3 at 3 wk, and 30 +/- 2 at 6 wk of the high-fat diet, P < 0.01]. and a reduced insulin-mediated increase in cardiac output. In eight dogs (4 high fat and 4 control), the dose-response relationship of insulin-induced glucose uptake also was studied. The whole body glucose uptake dose-response curve was shifted to the right, and the rate of maximal whole body glucose uptake was significantly decreased (P < 0.001). Finally, we observed a direct relationship between the high-fat diet-induced weekly increase in mean arterial pressure and the degree to which insulin resistance developed. In summary, the current study documents that feeding dogs a high-fat diet causes the rapid development of insulin resistance that is the result of both a reduced sensitivity and a reduced responsiveness to insulin.


2003 ◽  
Vol 284 (1) ◽  
pp. E193-E205 ◽  
Author(s):  
G. van Hall ◽  
M. Jensen-Urstad ◽  
H. Rosdahl ◽  
H.-C. Holmberg ◽  
B. Saltin ◽  
...  

To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72–76% maximal O2 uptake. A high lactate appearance rate (Ra, 184 ± 17 μmol · kg−1 · min−1) but a low arterial lactate concentration (∼2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of ∼2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was ∼45% at rest and ∼95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate Ra during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.


1984 ◽  
Vol 57 (6) ◽  
pp. 1754-1759 ◽  
Author(s):  
B. Issekutz

Dogs with indwelling catheters in the jugular vein and in the carotid artery ran on the treadmill (slope: 15%, speed: 133 m/min). Lactate turnover and glucose turnover were measured using [U-14C]lactate and [3-3H]glucose as tracers, according to the primed constant-rate infusion method. In addition, the participation of plasma glucose in lactate production (Ra-L) was measured with [U-14C]glucose. Propranolol was given either (A) before exercise (250 micrograms/kg, iv) or (B) in form of a primed infusion administered to the dog running at a steady rate. Measurements of plasma propranolol concentration showed that in type A experiments plasma propranolol fell in 45 min below the lower limit of the complete beta-blockade. In the first 15 min of work Ra-L rose rapidly; then it fell below that of the control (exercise) values. During steady exercise, the elevated Ra-L was decreased by propranolol infusion close to resting values. beta-Blockade doubled the response of glucose production, utilization, and metabolic clearance rate to exercise. In exercising dogs approximately 40-50% of Ra-L arises from plasma glucose. This value was increased by the blockade to 85-90%. It is concluded that glycogenolysis in the working muscle has a dual control: 1) an intracellular control operating at the beginning of exercise, and 2) a hormonal control involving epinephrine and the beta-adrenergic receptors.


2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


1992 ◽  
Vol 263 (6) ◽  
pp. R1241-R1247 ◽  
Author(s):  
B. S. Washburn ◽  
M. L. Bruss ◽  
E. H. Avery ◽  
R. A. Freedland

Reports of changes in carbohydrate metabolism during vitellogenesis in fish prompted an investigation of the effects of estrogen on glucose utilization in rainbow trout. Estrogen pellets were implanted in both female and male fish, and a third group of male fish was given a sham operation. After cannulation of the dorsal aorta, D-[1-3H]glucose and 2-deoxy-D-[U-14C]glucose were injected into the fish to observe whole animal and tissue glucose use. We found that estrogen does not affect glucose turnover rate or transit time but causes a decrease in plasma glucose concentration and size of the glucose mixing pool. Adipose tissue in female fish utilized glucose at a higher rate than sham fish. Ovarian tissue used more glucose per kilogram of body weight than the testes of the male fish. Regardless of treatment, brain had the highest rate of glucose consumption per gram of tissue, followed by gonads and red blood cells. Muscle and adipose tissue utilized only small amounts (< 1 nmol.g tissue-1.min-1) of glucose. We conclude that an increase in the rate of whole body glucose use is not responsible for the fall in plasma glucose caused by estrogen and seen during vitellogenesis.


2001 ◽  
Vol 280 (1) ◽  
pp. E130-E142 ◽  
Author(s):  
Ben B. Yaspelkis ◽  
James R. Davis ◽  
Maziyar Saberi ◽  
Toby L. Smith ◽  
Reza Jazayeri ◽  
...  

In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg · kg−1 · day−1 sc), or food restriction (HF-FR) for 12–15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic β-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.


Sign in / Sign up

Export Citation Format

Share Document