β-Cell function and islet morphology in normal, obese, and obese β-cell mass-reduced Göttingen minipigs

2005 ◽  
Vol 288 (2) ◽  
pp. E412-E421 ◽  
Author(s):  
M. O. Larsen ◽  
C. B. Juhl ◽  
N. Pørksen ◽  
C. F. Gotfredsen ◽  
R. D. Carr ◽  
...  

Herein, we bridge β-cell function and morphology in minipigs. We hypothesized that different aspects of β-cell dysfunction are present in obesity and obesity with reduced β-cell mass by using pulsatile insulin secretion as an early marker. Measures for β-cell function (glucose and arginine stimulation plus baseline and glucose-entrained pulsatile insulin secretion) and islet morphology were studied in long-term (19–20 mo) obese ( n = 5) and obese β-cell-reduced [nicotinamide + streptozotocin (STZ), n = 5] minipigs and normal controls, representing different stages in the development toward type 2 diabetes. Acute insulin response (AIR) to glucose and arginine were, surprisingly, normal in obese (0.3 g/kg glucose: AIR = 246 ± 119 vs. 255 ± 61 pM in control; 67 mg/kg arginine: AIR = 230 ± 124 vs. 214 ± 85 pM in control) but reduced in obese-STZ animals (0.3 g/kg glucose: AIR = 22 ± 36, P < 0.01; arginine: AIR = 87 ± 92 pM, P < 0.05 vs. control). Baseline pulsatile insulin secretion was reduced in obese (59 ± 16 vs. 76 ± 16% in control, P < 0.05) and more so in obese-STZ animals (43 ± 13%, P < 0.01), whereas regularity during entrainment was increased in obese animals (approximate entropy: 0.85 ± 0.14 vs. 1.13 ± 0.13 in control, P < 0.01). β-Cell mass (mg/kg body wt) was normal in obese and reduced in obese-STZ animals, with pancreatic fat infiltration in both groups. In conclusion, obesity and insulin resistance are not linked with a general reduction of β-cell function, but dynamics of insulin secretion are perturbed. The data suggest a sequence in the development of β-cell dysfunction, with the three groups representing stages in the progression from normal physiology to diabetes, and assessment of pulsatility as the single most sensitive marker of β-cell dysfunction.

Endocrinology ◽  
2015 ◽  
Vol 157 (2) ◽  
pp. 624-635 ◽  
Author(s):  
Joon Ha ◽  
Leslie S. Satin ◽  
Arthur S. Sherman

Abstract Type 2 diabetes (T2D) is generally thought to result from the combination of 2 metabolic defects, insulin resistance, which increases the level of insulin required to maintain glucose within the normal range, and failure of insulin-secreting pancreatic β-cells to compensate for the increased demand. We build on a mathematical model pioneered by Topp and colleagues to elucidate how compensation succeeds or fails. Their model added a layer of slow negative feedback to the classic insulin-glucose loop in the form of a slow, glucose-dependent birth and death law governing β-cell mass. We add to that model regulation of 2 aspects of β-cell function on intermediate time scales. The model quantifies the relative contributions of insulin action and insulin secretion defects to T2D and explains why prevention is easier than cure. The latter is a consequence of a threshold separating the normoglycemic and diabetic states (bistability), which also underlies the success of bariatric surgery and acute caloric restriction in rapidly reversing T2D. The threshold concept gives new insight into “Starling's Law of the Pancreas,” whereby insulin secretion is higher for prediabetics and early diabetics than for normal individuals.


2020 ◽  
Author(s):  
Taiyi Kuo ◽  
Wen Du ◽  
Yasutaka Miyachi ◽  
Prasanna K. Dadi ◽  
David A. Jacobson ◽  
...  

AbstractGenetic and acquired abnormalities contribute to pancreatic β-cell failure in diabetes. Transcription factors Hnf4α (MODY1) and FoxO1 are respective examples of these two components, and are known to act through β-cell-specific enhancers. However, their relationship is unclear. Here we show by genome-wide interrogation of chromatin modifications that FoxO1 ablation in mature β-cells leads to increased selection of FoxO1 enhancers by Hnf4α. To model the functional significance we generated single and compound knockouts of FoxO1 and Hnf4α in β-cells. Single knockout of either gene impaired insulin secretion in mechanistically distinct fashions. Surprisingly, the defective β-cell secretory function of either single mutant in hyperglycemic clamps and isolated islets treated with various secretagogues, was completely reversed in double mutants. Gene expression analyses revealed the reversal of β-cell dysfunction with an antagonistic network regulating glycolysis, including β-cell “disallowed” genes; and that a synergistic network regulating protocadherins emerged as likely mediators of the functional restoration of insulin secretion. The findings provide evidence of antagonistic epistasis as a model of gene/environment interactions in the pathogenesis of β-cell dysfunction.


2020 ◽  
Author(s):  
Mario A Miranda ◽  
Caryn Carson ◽  
Celine L St Pierre ◽  
Juan F Macias-Velasco ◽  
Jing W Hughes ◽  
...  

AbstractMaintenance of functional β-cell mass is critical to preventing diabetes, but the physiological mechanisms that cause β-cell populations to thrive or fail in the context of obesity are unknown. High fat-fed SM/J mice spontaneously transition from hyperglycemic-obese to normoglycemic-obese with age, providing a unique opportunity to study β-cell adaptation. Here, we characterize insulin homeostasis, islet morphology, and β-cell function during SM/J’s diabetic remission. As they resolve hyperglycemia, obese SM/J mice dramatically increase circulating and pancreatic insulin levels while improving insulin sensitivity. Immunostaining of pancreatic sections reveals that obese SM/J mice selectively increase β-cell mass but not α-cell mass. Obese SM/J mice do not show elevated β-cell mitotic index, but rather elevated α-cell mitotic index. Functional assessment of isolated islets reveals that obese SM/J mice increase glucose stimulated insulin secretion, decrease basal insulin secretion, and increase islet insulin content. These results establish that β-cell mass expansion and improved β-cell function underlie the resolution of hyperglycemia, indicating that obese SM/J mice are a valuable tool for exploring how functional β-cell mass can be recovered in the context of obesity.


2021 ◽  
Vol 22 (1) ◽  
pp. 421
Author(s):  
Hui Huang ◽  
Bradi R. Lorenz ◽  
Paula Horn Zelmanovitz ◽  
Catherine B. Chan

Prediabetes is a high-risk condition for type 2 diabetes (T2D). Pancreatic β-cells adapt to impaired glucose regulation in prediabetes by increasing insulin secretion and β-cell mass expansion. In people with prediabetes, metformin has been shown to prevent prediabetes conversion to diabetes. However, emerging evidence indicates that metformin has negative effects on β-cell function and survival. Our previous study established the Nile rat (NR) as a model for prediabetes, recapitulating characteristics of human β-cell compensation in function and mass expansion. In this study, we investigated the action of metformin on β-cells in vivo and in vitro. A 7-week metformin treatment improved glucose tolerance by reducing hepatic glucose output and enhancing insulin secretion. Although high-dose metformin inhibited β-cell glucose-stimulated insulin secretion in vitro, stimulation of β-cell insulin secretion was preserved in metformin-treated NRs via an indirect mechanism. Moreover, β-cells in NRs receiving metformin exhibited increased endoplasmic reticulum (ER) chaperones and alleviated apoptotic unfold protein response (UPR) without changes in the expression of cell identity genes. Additionally, metformin did not suppress β-cell mass compensation or proliferation. Taken together, despite the conflicting role indicated by in vitro studies, administration of metformin does not exert a negative effect on β-cell function or cell mass and, instead, early metformin treatment may help protect β-cells from exhaustion and decompensation.


2005 ◽  
Vol 187 (2) ◽  
pp. 225-235 ◽  
Author(s):  
S K Richards ◽  
L E Parton ◽  
I Leclerc ◽  
G A Rutter ◽  
R M Smith

Treatment of type 1 diabetes by islet transplantation is currently limited by loss of functional β-cell mass after transplantation. We investigated here whether adenovirus-mediated changes in AMP-activated protein kinase (AMPK) activity, previously shown to affect insulin secretion in vitro, might affect islet graft function in vivo. In isolated mouse and rat islets, insulin secretion stimulated by 17 (vs 3) mmol/l glucose was inhibited by 36.5% (P<0.01) and 43% (P<0.02) respectively after over-expression of constitutively-active AMPK- (AMPK CA) versus null (eGFP-expressing) viruses, and glucose oxidation was decreased by 38% (P<0.05) and 26.6% (P<0.05) respectively. Increases in apoptotic index (terminal deoxynucleotide transferase-mediated deoxyuridine trisphosphate biotin nick end-labelling) (TUNEL)) were also observed in AMPK CA- (22.8 ± 3.6% TUNEL-positive cells, P<0.001), but not AMPK DN- (2.72 ± 3.9%, positive cells, P=0.05) infected islets, versus null adenovirus-treated islets (0.68 ± 0.36% positive cells). Correspondingly, transplantation of islets expressing AMPK CA into streptozotocin-diabetic C57 BL/6 mice improved glycaemic control less effectively than transplantation with either null (P<0.02) or AMPK-DN-infected (P<0.01) islets. We conclude that activation of AMPK inhibits β-cell function in vivo and may represent a target for therapeutic intervention during islet transplantation.


2012 ◽  
Vol 215 (2) ◽  
pp. 303-311 ◽  
Author(s):  
Liqiong Song ◽  
Wei Xia ◽  
Zhao Zhou ◽  
Yuanyuan Li ◽  
Yi Lin ◽  
...  

Phenolic estrogen pollutants, a class of typical endocrine-disrupting chemicals, have attracted public attention due to their estrogenic activities of imitating steroid hormone 17β-estradiol (E2) effects. Exposure to these pollutants may disrupt insulin secretion and be a risk factor for type 2 diabetes. In this study, we investigated the direct effects of phenolic estrogen diethylstilbestrol (DES), octylphenol (OP), nonylphenol (NP), and bisphenol A (BPA) on rat pancreatic isletsin vitro, whose estrogenic activities were DES>NP>OP>BPA. Isolated β-cells were exposed to E2, DES, OP, NP, or BPA (0, 0.1, 0.5, 2.5, 25, and 250 μg/l) for 24 h. Parameters of insulin secretion, content, and morphology of β-cells were measured. In the glucose-stimulated insulin secretion test, E2and DES increased insulin secretion in a dose-dependent manner in a 16.7 mM glucose condition. However, for BPA, NP, or OP with lower estrogenic activity, the relationship between the doses and insulin secretion was an inverted U-shape. Moreover, OP, NP, or BPA (25 μg/l) impaired mitochondrial function in β-cells and induced remarkable swelling of mitochondria with loss of distinct cristae structure within the membrane, which was accompanied by disruption of mRNA expression of genes playing a key role in β-cell function (Glut2(Slc2a2),Gck,Pdx1,Hnf1α,Rab27a, andSnap25), and mitochondrial function (Ucp2andOgdh). Therefore, these phenolic estrogens can disrupt islet morphology and β-cell function, and mitochondrial dysfunction is suggested to play an important role in the impairment of β-cell function.


2022 ◽  
Author(s):  
Yue Liu ◽  
Yue Yang ◽  
Chenying Xu ◽  
Jianxing Liu ◽  
Jiale Chen ◽  
...  

Abstract The molecular link between obesity and β-cell decompensation that causes diabetes remains incompletely understood. Here we found that circGlis3, a circular RNA derived from Glis3, plays a critical role in islet β-cell compensation. circGlis3 was increased in islets of obese mouse models and moderately diabetic individuals with compensated β-cell function by Quaking (QKI)-mediated splicing. Overexpression of circGlis3 functions to restrain islet β-cell dysfunction and maintain β-cell mass in high-fat diet (HFD) fed mice and Leprdb/db mice. The cellular levels of circGlis3 modulate both insulin synthesis and secretion and lipotoxicity-induced apoptosis, resulting in profound changes in β-cell compensation. In an obesity model, circGlis3 promotes the synthesis and secretion of insulin by upregulating NeuroD1 and Creb1 through sponging miR-124-3p. In addition, we identified SCOTIN and fused in sarcoma (FUS) as interacting proteins using quantitative mass spectrometry. We demonstrated that the binding of SCOTIN to circGlis3 regulated the apoptosis of β-cell. And more, FUS binding to circGlis3 could decrease free circGlis3 in cytoplasm and block mechanism of circGlis3 via abnormal stable formation of stress granules (SGs) in hyperactive response to chronic stresses in obesity that is thought to contribute to the β-cell decompensation. These findings highlight a physiological role for circRNAs in compensation and indicate that modulation of circGlis3 expression may represent a potential strategy to protect against islet β-cell dysfunction and apoptosis during obesity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji Ho Yun ◽  
Min-Gyu Yoo ◽  
Ji Young Park ◽  
Hye-Ja Lee ◽  
Sang Ick Park

AbstractChronic alcohol consumption is known to be associated with type 2 diabetes (T2D), which is developed by two underlying mechanisms, β-cell dysfunction and insulin resistance. Identification of genetic variants in association with the development of T2D may help explain the genetic risk factors of T2D. In this study, we tried to find out some genetic variations, which interact with alcohol consumption and also are associated with β-cell function through 12 year’s follow-up study in Korean population. We performed a genotype association study using the community-based Ansung-Ansan Cohort data (baseline n = 3120; follow-up n = 433). Genotype association analyses of the baseline data showed that alcohol consumption is associated with the decreases of blood insulin levels and insulin secretion in participants with the KCNJ11 rs5219 risk allele. Moreover, multivariate logistic regression analyses revealed that the risk allele group is vulnerable to impairment of β-cell function in response to alcohol consumption (OR 1.450; 95% CI 1.061–1.982). Furthermore, 12-year’ follow-up results showed that alcohol consumption synergistically decreases insulin secretion in participants with KCNJ11 rs5219 risk alleles. Our findings demonstrate that the KCNJ11 rs5219 risk allele in combination with alcohol consumption could be a potential risk factor of β-cell dysfunction. We hope that this new findings could be helpful to further understand the development of T2D depending on individual genetic background in association with alcohol consumption.


2015 ◽  
Vol 228 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Sofianos Andrikopoulos ◽  
Barbara C Fam ◽  
Anita Holdsworth ◽  
Sherley Visinoni ◽  
Zheng Ruan ◽  
...  

Type 2 diabetes (T2D) is associated with defective insulin secretion, which in turn contributes to worsening glycaemic control and disease progression. The genetic cause(s) associated with impaired insulin secretion in T2D are not well elucidated. Here we used the polygenic New Zealand Obese (NZO) mouse model, which displays all the cardinal features of T2D including hyperglycaemia to identify genes associated with β-cell dysfunction. A genome-wide scan identified a major quantitative trait locus (QTL) on chromosome 7 associated with defective glucose-mediated insulin secretion. Using congenic strains, the locus was narrowed to two candidate genes encoding the components of the KATP channel: Abcc8 (SUR1) and Kcnj11 (Kir6.2). The NZO Abcc8 allele was associated with a ∼211 bp deletion in its transcript and reduced expression of SUR1. Transgenic NZO mice were generated that expressed the WT Abcc8/Kcnj11 genes and displayed significant improvements in early-phase glucose-mediated insulin secretion and glucose tolerance, confirming Abcc8 as a causative gene. Importantly, we showed that despite improving β-cell function in the NZO transgenic mice, there was no enhancement of insulin sensitivity or body weight. This study provides evidence for a role of Abcc8 in early-phase glucose-mediated insulin secretion and validates this gene as a contributor to β-cell dysfunction in T2D.


Sign in / Sign up

Export Citation Format

Share Document