Effects of the presence, absence, and overexpression of uncoupling protein-3 on adiposity and fuel metabolism in congenic mice

2006 ◽  
Vol 290 (6) ◽  
pp. E1304-E1312 ◽  
Author(s):  
Sheila R. Costford ◽  
Shehla N. Chaudhry ◽  
Mahmoud Salkhordeh ◽  
Mary-Ellen Harper

Uncoupling protein-3 (UCP3) is a poorly understood mitochondrial inner membrane protein expressed predominantly in skeletal muscle. The aim of this study was to examine the effects of the absence or constitutive physiological overexpression of UCP3 on whole body energy metabolism, glucose tolerance, and muscle triglyceride content. Congenic male UCP3 knockout mice ( Ucp3 −/−), wild-type, and transgenic UCP3 overexpressing (UCP3Tg) mice were fed a 10% fat diet for 4 or 8 mo after they were weaned. UCP3Tg mice had lower body weights and were less metabolically efficient than wild-type or Ucp3 −/− mice, but they were not hyperphagic. UCP3Tg mice had smaller epididymal white adipose tissue and brown adipose tissue (BAT) depots; however, there were no differences in muscle weights. Glucose and insulin tolerance tests revealed that both UCP3Tg and Ucp3 −/− mice were protected from development of impaired glucose tolerance and were more sensitive to insulin. 2-Deoxy-d-[1-3H]glucose tracer studies showed increased uptake of glucose into BAT and increased storage of liver glycogen in Ucp3 −/− mice. Assessments of intramuscular triglyceride (IMTG) revealed decreases in quadriceps of UCP3Tg mice compared with wild-type and Ucp3 −/− mice. When challenged with a 45% fat diet, Ucp3 −/− mice showed increased accumulation of IMTG compared with wild-type mice, which in turn had greater IMTG than UCP3Tg mice. Results are consistent with a role for UCP3 in preventing accumulation of triglyceride in both adipose tissue and muscle.

2016 ◽  
Vol 310 (2) ◽  
pp. E116-E128 ◽  
Author(s):  
Philip Hallenborg ◽  
Even Fjære ◽  
Bjørn Liaset ◽  
Rasmus Koefoed Petersen ◽  
Incoronata Murano ◽  
...  

The tumor suppressor p53 (TRP53 in mice) is known for its involvement in carcinogenesis, but work during recent years has underscored the importance of p53 in the regulation of whole body metabolism. A general notion is that p53 is necessary for efficient oxidative metabolism. The importance of UCP1-dependent uncoupled respiration and increased oxidation of glucose and fatty acids in brown or brown-like adipocytes, termed brite or beige, in relation to energy balance and homeostasis has been highlighted recently. UCP1-dependent uncoupled respiration in classic interscapular brown adipose tissue is central to cold-induced thermogenesis, whereas brite/beige adipocytes are of special importance in relation to diet-induced thermogenesis, where the importance of UCP1 is only clearly manifested in mice kept at thermoneutrality. We challenged wild-type and TRP53-deficient mice by high-fat feeding under thermoneutral conditions. Interestingly, mice lacking TRP53 gained less weight compared with their wild-type counterparts. This was related to an increased expression of Ucp1 and other PPARGC1a and PPARGC1b target genes but not Ppargc1a or Ppargc1b in inguinal white adipose tissue of mice lacking TRP53. We show that TRP53, independently of its ability to bind DNA, inhibits the activity of PPARGC1a and PPARGC1b. Collectively, our data show that TRP53 has the ability to regulate the thermogenic capacity of adipocytes through modulation of PPARGC1 activity.


2008 ◽  
Vol 295 (5) ◽  
pp. E1018-E1024 ◽  
Author(s):  
Sheila R. Costford ◽  
Shehla N. Chaudhry ◽  
Sean A. Crawford ◽  
Mahmoud Salkhordeh ◽  
Mary-Ellen Harper

Uncoupling protein-3 (UCP3) is a mitochondrial inner-membrane protein highly expressed in skeletal muscle. While UCP3's function is still unknown, it has been hypothesized to act as a fatty acid (FA) anion exporter, protecting mitochondria against lipid peroxidation and/or facilitating FA oxidation. The aim of this study was to determine the effects of long-term feeding of a 45% fat diet on whole body indicators of muscle metabolism in congenic C57BL/6 mice that were either lacking UCP3 ( Ucp3−/−) or had a transgenically induced approximately twofold increase in UCP3 levels ( UCP3tg). Mice were fed the high-fat (HF) diet for a period of either 4 or 8 mo immediately following weaning. After long-term HF feeding, UCP3tg mice weighed an average of 15% less than wild-type mice ( P < 0.05) and were 20% less metabolically efficient than both wild-type and Ucp3−/− mice ( P < 0.01). Additionally, wild-type mice had 21% lower, whereas UCP3tg mice had 36% lower, levels of adiposity compared with Ucp3−/− mice ( P < 0.05 and P < 0.001, respectively), indicating a protective effect of UCP3 against fat gain. No differences in whole body oxygen consumption were detected following long-term HF feeding. Glucose and insulin tolerance tests revealed that both the UCP3tg and Ucp3−/− mice were more glucose tolerant and insulin sensitive compared with wild-type mice after short-term HF feeding, but this protection was not maintained in the long term. Findings indicate that UCP3 is involved in protection from fat gain induced by long-term HF feeding, but not in protection from insulin resistance.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Shasika Jayarathne ◽  
Mandana Pahlavani ◽  
Latha Ramalingam ◽  
Shane Scoggin ◽  
Naima Moustaid-Moussa

Abstract Objectives Brown adipose tissue (BAT) regulates energy balance through thermogenesis, in part via uncoupling protein -1 (UCP-1). White adipose tissue (WAT), namely subcutaneous adipose tissue (SAT) can convert to a beige/brite adipose tissue phenotype (browning) under thermogenic conditions such as cold. We previously reported that eicosapentaenoic acid (EPA) reduced obesity and glucose intolerance, and increased UCP-1 in BAT of B6 mice at ambient temperature (22°C); and these effects were attenuated at thermoneutral environment (28–30°C). We hypothesized that EPA exerts anti-obesity effects on SAT, including increased browning, adipocyte hypotrophy; and these effects require UCP-1. Methods Six-week-old B6 wild type (WT) and UCP-1 knock-out (KO) male mice were maintained at thermoneutral environment and fed high fat diet (HF) with or without 36 g/kg of AlaskOmega EPA-enriched fish oil (800 mg/g) for 14 weeks; and SAT was collected for histological, gene and protein analyses. SAT was also prepared from chow diet-fed WT and KO mice at ambient environment to prepare stroma vascular cells, which were differentiated into adipocytes, treated with 100uM EPA for 48 hours then harvested for mRNA and protein analyses. Results KO mice fed HF diets had the highest body weight (P < 0.05) among all groups. EPA reduced fat cell size in both WT and KO mice fed the EPA diet. mRNA levels of fibroblast growth factor-21 (FGF-21) were higher in SAT of WT mice fed EPA compared to WT mice fed HF (P < 0.05), with no differences between the KO genotype. KO mice fed HF diets had lower levels of UCP-3 in SAT compared to WT mice fed HF (P < 0.05), which was rescued only in the KO mice fed EPA (P < 0.05). UCP-1 protein levels were very low in SAT tissues, and UCP-2 mRNA levels were similar across all groups in SAT. Interestingly, EPA significantly (P < 0.05) increased mRNA expression of UCP-2, UCP-3 and FGF21 in differentiated SAT adipocytes from both WT and KO compared to control. Furthermore, UCP-1 mRNA levels were significantly higher in WT adipocytes treated with EPA, compared to non-treated cells (P < 0.05). Additional mechanistic studies are currently underway to further dissect adipose depot differences in EPA effects in WT vs. KO mice. Conclusions Our data suggest that EPA increases SAT browning, independently of UCP-1. Funding Sources NIH/NCCIH.


2021 ◽  
Author(s):  
Mingsheng Ye ◽  
Liping Luo ◽  
Qi Guo ◽  
Guanghua Lei ◽  
Chao Zeng ◽  
...  

Brown adipose tissue (BAT) is emerging as a target to beat obesity through the dissipation of chemical energy to heat. However, the molecular mechanisms of brown adipocyte thermogenesis remain to be further elucidated. Here, we show that KCTD10, a member of the polymerase delta-interacting protein 1 (PDIP1) family, was reduced in BAT by cold stress and a β3 adrenoceptor agonist. Moreover, KCTD10 level increased in the BAT of obese mice, and KCTD10 overexpression attenuates uncoupling protein 1 (UCP1) expression in primary brown adipocytes. BAT-specific KCTD10 knockdown mice had increased thermogenesis and cold tolerance protecting from high fat diet (HFD)-induced obesity. Conversely, overexpression of KCTD10 in BAT caused reduced thermogenesis, cold intolerance, and obesity. Mechanistically, inhibiting Notch signaling restored the KCTD10 overexpression suppressed thermogenesis. Our study presents that KCTD10 serves as an upstream regulator of notch signaling pathway to regulate BAT thermogenesis and whole-body metabolic function.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Clarissa S. Craft ◽  
Hero Robles ◽  
Madelyn R. Lorenz ◽  
Eric D. Hilker ◽  
Kristann L. Magee ◽  
...  

AbstractAdipocytes within the skeleton are collectively termed bone marrow adipose tissue (BMAT). BMAT contributes to peripheral and local metabolism, however, its capacity for cell-autonomous expression of uncoupling protein 1 (UCP1), a biomarker of beige and brown adipogenesis, remains unclear. To overcome this, Ucp1-Cre was used to drive diphtheria toxin expression in cells expressing UCP1 (Ucp1Cre+/DTA+). Despite loss of brown adipose tissue, BMAT volume was not reduced in Ucp1Cre+/DTA+ mice. Comparably, in mTmG reporter mice (Ucp1Cre+/mTmG+), Ucp1-Cre expression was absent from BMAT in young (3-weeks) and mature (16-weeks) male and female mice. Further, β3-agonist stimulation failed to induce Ucp1-Cre expression in BMAT. This demonstrates that BMAT adipocytes are not UCP1-expressing beige/brown adipocytes. Thus, to identify novel and emerging roles for BMAT adipocytes in skeletal and whole-body homeostasis, we performed gene enrichment analysis of microarray data from adipose tissues of adult rabbits. Pathway analysis revealed genetic evidence for differences in BMAT including insulin resistance, decreased fatty acid metabolism, and enhanced contributions to local processes including bone mineral density through candidate genes such as osteopontin. In sum, this supports a paradigm by which BMAT adipocytes are a unique subpopulation that is specialized to support cells within the skeletal and hematopoietic niche.


2020 ◽  
Vol 34 (11) ◽  
pp. 15146-15163
Author(s):  
Elena Silvestri ◽  
Rosalba Senese ◽  
Rita De Matteis ◽  
Federica Cioffi ◽  
Maria Moreno ◽  
...  

2001 ◽  
Vol 361 (1) ◽  
pp. 49-56 ◽  
Author(s):  
James A. HARPER ◽  
Jeff A. STUART ◽  
Mika B. JEKABSONS ◽  
Damien ROUSSEL ◽  
Kevin M. BRINDLE ◽  
...  

Western blots detected uncoupling protein 3 (UCP3) in skeletal-muscle mitochondria from wild-type but not UCP3 knock-out mice. Calibration with purified recombinant UCP3 showed that mouse and rat skeletal muscle contained 0.14μg of UCP3/mg of mitochondrial protein. This very low UCP3 content is 200–700-fold less than the concentration of UCP1 in brown-adipose-tissue mitochondria from warm-adapted hamster (24–84μg of UCP1/mg of mitochondrial protein). UCP3 was present in brown-adipose-tissue mitochondria from warm-adapted rats but was undetectable in rat heart mitochondria. We expressed human UCP3 in yeast mitochondria at levels similar to, double and 7-fold those found in rodent skeletal-muscle mitochondria. Yeast mitochondria containing UCP3 were more uncoupled than empty-vector controls, particularly at concentrations that were 7-fold physiological. However, uncoupling by UCP3 was not stimulated by the known activators palmitate and superoxide; neither were they inhibited by GDP, suggesting that the observed uncoupling was a property of non-native protein. As a control, UCP1 was expressed in yeast mitochondria at similar concentrations to that of UCP3 and at up to 50% of the physiological level of UCP1. Low levels of UCP1 gave palmitate-dependent and GDP-sensitive proton conductance but higher levels of UCP1 caused an additional GDP-insensitive uncoupling artifact. We conclude that the uncoupling of yeast mitochondria by high levels of UCP3 expression is entirely an artifact and provides no evidence for any native uncoupling activity of the protein.


Endocrinology ◽  
2003 ◽  
Vol 144 (10) ◽  
pp. 4306-4314 ◽  
Author(s):  
András K. Fülöp ◽  
Anna Földes ◽  
Edit Buzás ◽  
Krisztina Hegyi ◽  
Ildikó H. Miklós ◽  
...  

Histamine has been referred to as an anorexic factor that decreases appetite and fat accumulation and affects feeding behavior. Tuberomammillary histaminergic neurons have been implicated in central mediation of peripheral metabolic signals such as leptin, and centrally released histamine inhibits ob gene expression. Here we have characterized the metabolic phenotype of mice that completely lack the ability to produce histamine because of targeted disruption of the key enzyme in histamine biosynthesis (histidine decarboxylase, HDC). Histochemical analyses confirmed the lack of HDC mRNA, histamine immunoreactivity, and histaminergic innervation throughout the brain of gene knockout mouse. Aged histamine-deficient (HDC−/−) mice are characterized by visceral adiposity, increased amount of brown adipose tissue, impaired glucose tolerance, hyperinsulinemia, and hyperleptinemia. Histamine-deficient animals are not hyperphagic but gain more weight and are calorically more efficient than wild-type controls. These metabolic changes presumably are due to the impaired regulatory loop between leptin and hypothalamic histamine that results in orexigenic dominance through decreased energy expenditure, attenuated ability to induce uncoupling protein-1 mRNA in the brown adipose tissue and defect in mobilizing energy stores. Our results further support the role of histamine in regulation of energy homeostasis.


2010 ◽  
Vol 298 (3) ◽  
pp. E548-E554 ◽  
Author(s):  
Rickard Westergren ◽  
Daniel Nilsson ◽  
Mikael Heglind ◽  
Zahra Arani ◽  
Mats Grände ◽  
...  

Many members of the forkhead genes family of transcription factors have been implicated as important regulators of metabolism, in particular, glucose homeostasis, e.g., Foxo1, Foxa3, and Foxc2. The purpose of this study was to exploit the possibility that yet unknown members of this gene family play a role in regulating glucose tolerance in adipocytes. We identified Foxf2 in a screen for adipose-expressed forkhead genes. In vivo overexpression of Foxf2 in an adipose tissue-restricted fashion demonstrated that such mice display a significantly induced insulin secretion in response to an intravenous glucose load compared with wild-type littermates. In response to increased Foxf2 expression, insulin receptor substrate 1 (IRS1) mRNA and protein levels are significantly downregulated in adipocytes; however, the ratio of serine vs. tyrosine phosphorylation of IRS1 seems to remain unaffected. Furthermore, adipocytes overexpressing Foxf2 have a significantly lower insulin-mediated glucose uptake compared with wild-type adipocytes. These findings argue that Foxf2 is a previously unrecognized regulator of cellular and systemic whole body glucose tolerance, at least in part, due to lower levels of IRS1. Foxf2 and its downstream target genes can provide new insights with regard to identification of novel therapeutic targets.


2011 ◽  
Vol 301 (2) ◽  
pp. R473-R483 ◽  
Author(s):  
Jake D. Bauwens ◽  
Eric G. Schmuck ◽  
Christopher R. Lindholm ◽  
Rebecca L. Ertel ◽  
Jacob D. Mulligan ◽  
...  

Recent studies indicate that a substantial amount of metabolically active brown adipose tissue (BAT) exists in adult humans. Given the unique ability of BAT to convert calories to heat, there is intense interest in understanding the regulation of BAT metabolism in hopes that its manipulation might be an effective way of expending excess calories. Because of the established role of AMP-activated protein kinase (AMPK) as a “metabolic master switch” and its extremely high levels of activity in BAT, it was hypothesized that AMPK might play a central role in regulating BAT metabolism. To test this hypothesis, whole body α1-AMPK−/− (knockout) and wild-type mice were studied 1) under control (room temperature) conditions, 2) during chronic cold exposure (14 days at 4°C), and 3) during acute nonshivering thermogenesis (injection of a β3-adrenergic agonist). Under control conditions, loss of α1-AMPK resulted in downregulation of two important prothermogenic genes in BAT, thyrotropin-releasing hormone (−9.2-fold) and ciliary neurotrophic factor (−8.7-fold). Additionally, it caused significant upregulation of α2-AMPK activity in BAT, white adipose tissue, and liver, but not cardiac or skeletal muscle. During acute nonshivering thermogenesis and chronic cold exposure, body temperature was indistinguishable in the α1-AMPK−/− and wild-type mice. Similarly, the degree of cold-induced hyperphagia was identical in the two groups. We conclude that α1-AMPK does not play an obligatory role in these processes and that adaptations to chronic loss of α1-AMPK are able to compensate for its loss via several mechanisms.


Sign in / Sign up

Export Citation Format

Share Document