Reduced glucose-stimulated insulin secretion following a one-week IGF-1 infusion in late gestation fetal sheep is due to an intrinsic islet defect

Author(s):  
Alicia White ◽  
Jane Stremming ◽  
Brit H Boehmer ◽  
Eileen Chang ◽  
Sonnet S. Jonker ◽  
...  

Insulin and insulin-like growth factor-1 (IGF-1) are fetal hormones critical to establishing normal fetal growth. Experimentally elevated IGF-1 concentrations during late gestation increase fetal weight but lower fetal plasma insulin concentrations. We therefore hypothesized that infusion of an IGF-1 analog for one week into late gestation fetal sheep would attenuate fetal glucose-stimulated insulin secretion (GSIS) and insulin secretion in islets isolated from these fetuses. Late gestation fetal sheep received infusions with IGF-1 LR3 (IGF-1, n=8), an analogue of IGF-1 with low affinity for the IGF binding proteins and high affinity for the IGF-1 receptor, or vehicle control (CON, n=9). Fetal GSIS was measured with a hyperglycemic clamp (IGF-1, n=8; CON, n=7). Fetal islets were isolated, and insulin secretion was assayed in static incubations (IGF-1, n=8; CON, n=7). Plasma insulin and glucose concentrations in IGF-1 fetuses were lower compared to CON (P=0.0135 and P=0.0012, respectively). During the GSIS study, IGF-1 fetuses had lower insulin secretion compared to CON (P=0.0453). In vitro, glucose-stimulated insulin secretion remained lower in islets isolated from IGF-1 fetuses (P=0.0447). In summary, IGF-1 LR3 infusion for one week into fetal sheep lowers insulin concentrations and reduces fetal GSIS. Impaired insulin secretion persists in isolated fetal islets indicating an intrinsic islet defect in insulin release when exposed to IGF-1 LR3 infusion for one week. We speculate this alteration in the insulin/IGF-1 axis contributes to the long-term reduction in β-cell function in neonates born with elevated IGF-1 concentrations following pregnancies complicated by diabetes or other conditions associated with fetal overgrowth.

2006 ◽  
Vol 291 (2) ◽  
pp. E404-E411 ◽  
Author(s):  
Paul J. Rozance ◽  
Sean W. Limesand ◽  
William W. Hay

We measured in vivo and in vitro nutrient-stimulated insulin secretion in late gestation fetal sheep to determine whether an intrinsic islet defect is responsible for decreased glucose-stimulated insulin secretion (GSIS) in response to chronic hypoglycemia. Control fetuses responded to both leucine and lysine infusions with increased arterial plasma insulin concentrations (average increase: 0.13 ± 0.05 ng/ml leucine; 0.99 ± 0.26 ng/ml lysine). In vivo lysine-stimulated insulin secretion was decreased by chronic (0.37 ± 0.18 ng/ml) and acute (0.27 ± 0.19 ng/ml) hypoglycemia. Leucine did not stimulate insulin secretion following acute hypoglycemia but was preserved with chronic hypoglycemia (0.12 ± 0.09 ng/ml). Isolated pancreatic islets from chronically hypoglycemic fetuses had normal insulin and DNA content but decreased fractional insulin release when stimulated with glucose, leucine, arginine, or lysine. Isolated islets from control fetuses responded to all nutrients. Therefore, chronic late gestation hypoglycemia causes defective in vitro nutrient-regulated insulin secretion that is at least partly responsible for diminished in vivo GSIS. Chronic hypoglycemia is a feature of human intrauterine growth restriction (IUGR) and might lead to an islet defect that is responsible for the decreased insulin secretion patterns seen in human IUGR fetuses and low-birth-weight human infants.


2017 ◽  
Vol 312 (4) ◽  
pp. R492-R500 ◽  
Author(s):  
Joshua S. Benjamin ◽  
Christine B. Culpepper ◽  
Laura D. Brown ◽  
Stephanie R. Wesolowski ◽  
Sonnet S. Jonker ◽  
...  

Fetal insulin secretion is inhibited by acute hypoxemia. The relationship between prolonged hypoxemia and insulin secretion, however, is less well defined. To test the hypothesis that prolonged fetal hypoxemia impairs insulin secretion, studies were performed in sheep fetuses that were bled to anemic conditions for 9 ± 0 days (anemic, n = 19) and compared with control fetuses ( n = 15). Arterial hematocrit and oxygen content were 34% and 52% lower, respectively, in anemic vs. control fetuses ( P < 0.0001). Plasma glucose concentrations were 21% higher in the anemic group ( P < 0.05). Plasma norepinephrine and cortisol concentrations increased 70% in the anemic group ( P < 0.05). Glucose-, arginine-, and leucine-stimulated insulin secretion all were lower ( P < 0.05) in anemic fetuses. No differences in pancreatic islet size or β-cell mass were found. In vitro, isolated islets from anemic fetuses secreted insulin in response to glucose and leucine as well as control fetal islets. These findings indicate a functional islet defect in anemic fetuses, which likely involves direct effects of low oxygen and/or increased norepinephrine on insulin release. In pregnancies complicated by chronic fetal hypoxemia, increasing fetal oxygen concentrations may improve insulin secretion.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 483
Author(s):  
Dahae Lee ◽  
Jun Yeon Park ◽  
Sanghyun Lee ◽  
Ki Sung Kang

In this study, we examined the effect of ethanolic extract of Salicornia herbacea (ESH), isorhamnetin 3-O-glucoside (I3G), quercetin 3-O-glucoside (Q3G), quercetin, and isorhamnetin on α-glucosidase activity and glucose-stimulated insulin secretion (GSIS) in insulin-secreting rat insulinoma (INS-1) cells. A portion of the ethyl acetate fraction of ESH was chromatographed on a silica gel by a gradient elution with chloroform and methanol to provide Q3G and I3G. ESH, Q3G, and quercetin inhibited α-glucosidase activity, and quercetin (IC50 value was 29.47 ± 3.36 μM) inhibited the activity more effectively than Q3G. We further demonstrated that ESH, Q3G, quercetin, I3G, and isorhamnetin promote GSIS in INS-1 pancreatic β-cells without inducing cytotoxicity. Among them, I3G was the most effective in enhancing GSIS. I3G enhanced the phosphorylation of total extracellular signal-regulated kinase (ERK), insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, and activated pancreatic and duodenal homeobox-1 (PDX-1), which are associated with insulin secretion and β-cell function. As components of ESH, Q3G has the potential to regulate blood glucose by inhibiting α-glucosidase activity, and I3G enhances the insulin secretion, but its bioavailability should be considered in determining biological importance.


2020 ◽  
Vol 150 (8) ◽  
pp. 2061-2069
Author(s):  
Brit H Boehmer ◽  
Laura D Brown ◽  
Stephanie R Wesolowski ◽  
William W Hay ◽  
Paul J Rozance

ABSTRACT Background Infusion of a complete amino acid mixture into normal late-gestation fetal sheep potentiates glucose-stimulated insulin secretion (GSIS). Leucine acutely stimulates insulin secretion in late-gestation fetal sheep and isolated fetal sheep islets in vitro. Objectives We hypothesized that a 9-d leucine infusion would potentiate GSIS in fetal sheep. Methods Columbia-Rambouillet fetal sheep at 126 days of gestation received a 9-d leucine infusion to achieve a 50%–100% increase in leucine concentrations or a control infusion. At the end of the infusion we measured GSIS, pancreatic morphology, and expression of pancreatic mRNAs. Pancreatic islet endothelial cells (ECs) were isolated from fetal sheep and incubated with supplemental leucine or vascular endothelial growth factor A (VEGFA) followed by collection of mRNA. Data measured at multiple time points were compared with a repeated-measures 2-factor ANOVA. Data measured at 1 time point were compared using Student's t test or the Mann–Whitney test. Results Glucose-stimulated insulin concentrations were 80% higher in leucine-infused (LEU) fetuses than in controls (P &lt; 0.05). In the pancreas, LEU fetuses had a higher proportion of islets &gt;5000 μm2 than controls (75% more islets &gt;5000 μm2; P &lt; 0.05) and a larger proportion of the pancreas that stained for β cells (12% greater; P &lt; 0.05). Pancreatic and pancreatic islet vascularity were both 25% greater in LEU fetuses (P &lt; 0.05). Pancreatic VEGFA and hepatocyte growth factor (HGF) mRNA expressions were 38% and 200% greater in LEU fetuses than in controls (P &lt; 0.05), respectively. In isolated islet ECs, HGF mRNA was 20% and 50% higher after incubation in supplemental leucine (P &lt; 0.05) or VEGFA (P &lt; 0.01), respectively. Conclusions A 9-d leucine infusion potentiates fetal GSIS, demonstrating that glucose and leucine act synergistically to stimulate insulin secretion in fetal sheep. A greater proportion of the pancreas being comprised of β cells and higher pancreatic vascularity contributed to the higher GSIS.


1986 ◽  
Vol 251 (1) ◽  
pp. E86-E91 ◽  
Author(s):  
M. T. Bihoreau ◽  
A. Ktorza ◽  
A. Kervran ◽  
L. Picon

The effects of gestational hyperglycemia on B-cell function were studied in near-term fetuses from unrestrained pregnant rats made slightly or highly hyperglycemic using continuous glucose infusion during the last week of pregnancy. Pancreatic and plasma insulin and insulin secretion in vitro were studied in the fetuses. Compared with controls, slightly hyperglycemic fetuses showed increased pancreatic and plasma insulin concentrations and similar insulin release in response to glucose in vitro. In highly hyperglycemic fetuses, pancreatic and plasma insulin concentrations were unchanged compared with controls, and insulin release in vitro was insensitive to glucose and to the mixture glucose plus theophylline. These results confirm that glucose is able to stimulate insulin secretion in normal or slightly hyperglycemic fetuses and suggest that severe hyperglycemia per se, without association of other metabolic disorders or toxic injuries, profoundly alters the stimulus-secretion coupling of the fetal rat B-cell.


2019 ◽  
Vol 128 (10) ◽  
pp. 644-653
Author(s):  
Felicia Gerst ◽  
Christine Singer ◽  
Katja Noack ◽  
Dunia Graf ◽  
Gabriele Kaiser ◽  
...  

AbstractGlucose-stimulated insulin secretion (GSIS) is the gold standard for β-cell function. Both experimental and clinical diabetology, i. e., preceding transplantation of isolated human islets, depend on functional testing. However, multiple factors influence GSIS rendering the comparison of different in vitro tests of glucose responsiveness difficult. This study examined the influence of bovine serum albumin (BSA)-coupled fatty acids on GSIS. Isolated islet preparations of human donors and of 12-months old mice displayed impaired GSIS in the presence of 0.5% FFA-free BSA compared to 0.5% BSA (fraction V, not deprived from fatty acids). In aged INS-1E cells, i. e. at a high passage number, GSIS became highly sensitive to FFA-free BSA. Readdition of 30 µM palmitate or 30 µM oleate to FFA-free BSA did not rescue GSIS, while the addition of 100 µM palmitate and the raise of extracellular Ca2+from 1.3 to 2.6 mM improved glucose responsiveness. A high concentration of palmitate (600 µM), which fully activates FFA1, largely restored insulin secretion. The FFA1-agonist TUG-469 also increased insulin secretion but to a lesser extent than palmitate. Glucose- and TUG-induced Ca2+oscillations were impaired in glucose-unresponsive, i. e., aged INS-1E cells. These results suggest that fatty acid deprivation (FFA-free BSA) impairs GSIS mainly through an effect on Ca2+sensitivity.


2020 ◽  
Author(s):  
Brit H Boehmer ◽  
Stephanie R Wesolowski ◽  
Laura D Brown ◽  
Paul J Rozance

ABSTRACT Background Growth-restricted fetuses have attenuated glucose-stimulated insulin secretion (GSIS), smaller pancreatic islets, less pancreatic β-cells, and less pancreatic vascularization compared with normally growing fetuses. Infusion of leucine into normal late-gestation fetal sheep potentiates GSIS, as well as increases pancreatic islet size, the proportion of the pancreas and islet comprising β-cells, and pancreatic and islet vascularity. In addition, leucine stimulates hepatocyte growth factor (HGF ) mRNA expression in islet endothelial cells isolated from normal fetal sheep. Objective We hypothesized that a 9-d leucine infusion would potentiate GSIS and increase pancreatic islet size, β-cells, and vascularity in intrauterine fetal growth restriction (IUGR) fetal sheep. We also hypothesized that leucine would stimulate HGF mRNA in islet endothelial cells isolated from IUGR fetal sheep. Methods Late-gestation Columbia-Rambouillet IUGR fetal sheep (singleton or twin) underwent surgeries to place vascular sampling and infusion catheters. Fetuses were randomly allocated to receive a 9-d leucine infusion to achieve a 50–100% increase in leucine concentrations or a control saline infusion. GSIS was measured and pancreas tissue was processed for histologic analysis. Pancreatic islet endothelial cells were isolated from IUGR fetal sheep and incubated with supplemental leucine. Data were analyzed by mixed-models ANOVA; Student, Mann-Whitney, or a paired t test; or a test of equality of proportions. Results Chronic leucine infusion in IUGR fetuses did not affect GSIS, islet size, the proportion of the pancreas comprising β-cells, or pancreatic or pancreatic islet vascularity. In isolated islet endothelial cells from IUGR fetuses, HGF mRNA expression was not affected by supplemental leucine. Conclusions IUGR fetal sheep islets are not responsive to a 9-d leucine infusion with respect to insulin secretion or any histologic features measured. This is in contrast to the response in normally growing fetuses. These results are important when considering nutritional strategies to prevent the adverse islet and β-cell consequences in IUGR fetuses.


2020 ◽  
Vol 247 (1) ◽  
pp. 115-126 ◽  
Author(s):  
Brit H Boehmer ◽  
Peter R Baker ◽  
Laura D Brown ◽  
Stephanie R Wesolowski ◽  
Paul J Rozance

A 9-day infusion of leucine into fetal sheep potentiates fetal glucose-stimulated insulin secretion (GSIS). However, there were accompanying pancreatic structural changes that included a larger proportion of β-cells and increased vascularity. Whether leucine can acutely potentiate fetal GSIS in vivo before these structural changes develop is unknown. The mechanisms by which leucine acutely potentiates GSIS in adult islets and insulin-secreting cell lines are well known. These mechanisms involve leucine metabolism, including leucine oxidation. However, it is not clear if leucine-stimulated metabolic pathways are active in fetal islets. We hypothesized that leucine would acutely potentiate GSIS in fetal sheep and that isolated fetal islets are capable of oxidizing leucine. We also hypothesized that leucine would stimulate other metabolic pathways associated with insulin secretion. In pregnant sheep we tested in vivo GSIS with and without an acute leucine infusion. In isolated fetal sheep islets, we measured leucine oxidation with a [1-14C] l-leucine tracer. We also measured concentrations of other amino acids, glucose, and analytes associated with cellular metabolism following incubation of fetal islets with leucine. In vivo, a leucine infusion resulted in glucose-stimulated insulin concentrations that were over 50% higher than controls (P < 0.05). Isolated fetal islets oxidized leucine. Leucine supplementation of isolated fetal islets also resulted in significant activation of metabolic pathways involving leucine and other amino acids. In summary, acute leucine supplementation potentiates fetal GSIS in vivo, likely through pathways related to the oxidation of leucine and catabolism of other amino acids.


2006 ◽  
Vol 291 (2) ◽  
pp. E214-E220 ◽  
Author(s):  
Luke C. Carey ◽  
Yixin Su ◽  
Nancy K. Valego ◽  
James C. Rose

The late-gestation plasma cortisol surge in the sheep fetus is critical for stimulating organ development and parturition. Increased adrenal responsiveness is one of the key reasons for the surge; however, the underlying mechanisms are not fully understood. Our recent studies suggest that ACTH-mediated increased expression of ACTH receptor (ACTH-R) and steroid acute regulatory protein (StAR) may play a role in enhancing responsiveness. Hence, we examined effects of ACTH infusion in fetal sheep on mRNA expression of these two mediators of adrenal responsiveness and assessed the functional consequences of this treatment in vitro. Fetuses of ∼118 and 138 days of gestational age (dGA) were infused with ACTH-(1–24) for 24 h. Controls received saline infusion. Arterial blood was sampled throughout the infusion. Adrenals were isolated and analyzed for ACTH-R and StAR mRNA, or cells were cultured for 48 h. Cells were stimulated with ACTH, and medium was collected for cortisol measurement. Fetal plasma ACTH and cortisol concentrations increased over the infusion period in both groups. ACTH-R mRNA levels were significantly higher in ACTH-infused fetuses in both the 118 and 138 dGA groups. StAR mRNA increased significantly in both the 118 and 138 dGA groups. Adrenal cells from ACTH-infused fetuses were significantly more responsive to ACTH stimulation in terms of cortisol secretion than those from saline-infused controls. These findings demonstrate that increases in circulating ACTH levels promote increased expression of ACTH-R and StAR mRNA and are coupled to heightened adrenal responsiveness.


2017 ◽  
Vol 232 (2) ◽  
pp. 285-295 ◽  
Author(s):  
Xiaochuan Chen ◽  
Amy C Kelly ◽  
Dustin T Yates ◽  
Antoni R Macko ◽  
Ronald M Lynch ◽  
...  

Complications in pregnancy elevate fetal norepinephrine (NE) concentrations. Previous studies in NE-infused sheep fetuses revealed that sustained exposure to high NE resulted in lower expression of α2-adrenergic receptors in islets and increased insulin secretion responsiveness after acutely terminating the NE infusion. In this study, we determined if the compensatory increase in insulin secretion after chronic elevation of NE is independent of hyperglycemia in sheep fetuses and whether it is persistent in conjunction with islet desensitization to NE. After an initial assessment of glucose-stimulated insulin secretion (GSIS) at 129 ± 1 days of gestation, fetuses were continuously infused for seven days with NE and maintained at euglycemia with a maternal insulin infusion. Fetal GSIS studies were performed again on days 8 and 12. Adrenergic sensitivity was determined in pancreatic islets collected at day 12. NE infusion increased (P < 0.01) fetal plasma NE concentrations and lowered (P < 0.01) basal insulin concentrations compared to vehicle-infused controls. GSIS was 1.8-fold greater (P < 0.05) in NE-infused fetuses compared to controls at both one and five days after discontinuing the infusion. Glucose-potentiated arginine-induced insulin secretion was also enhanced (P < 0.01) in NE-infused fetuses. Maximum GSIS in islets isolated from NE-infused fetuses was 1.6-fold greater (P < 0.05) than controls, but islet insulin content and intracellular calcium signaling were not different between treatments. The half-maximal inhibitory concentration for NE was 2.6-fold greater (P < 0.05) in NE-infused islets compared to controls. These findings show that chronic NE exposure and not hyperglycemia produce persistent adaptations in pancreatic islets that augment β-cell responsiveness in part through decreased adrenergic sensitivity.


Sign in / Sign up

Export Citation Format

Share Document