Partial ablation of leptin signaling in mouse pancreatic α-cells does not alter either glucose or lipid homeostasis

2014 ◽  
Vol 306 (7) ◽  
pp. E748-E755 ◽  
Author(s):  
Eva Tudurí ◽  
Heather C. Denroche ◽  
Jenna A. Kara ◽  
Ali Asadi ◽  
Jessica K. Fox ◽  
...  

The role of glucagon in the pathological condition of diabetes is gaining interest, and it has been recently reported that its action is essential for hyperglycemia to occur. Glucagon levels, which are elevated in some diabetic models, are reduced following leptin therapy. Likewise, hyperglycemia is corrected in type 1 diabetic mice treated with leptin, although the mechanisms have not been fully determined. A direct inhibitory effect of leptin on mouse and human α-cells has been demonstrated at the levels of electrical activity, calcium signaling, and glucagon secretion. In the present study we employed the Cre- loxP strategy to generate Lepr flox/flox Gcg-cre mice, which specifically lack leptin receptors in glucagon-secreting α-cells, to determine whether leptin resistance in α-cells contributes to hyperglucagonemia, and also whether leptin action in α-cells is required to improve glycemia in type 1 diabetes with leptin therapy. Immunohistochemical analysis of pancreas sections revealed Cre-mediated recombination in ∼43% of the α-cells. We observed that in vivo Lepr flox/flox Gcg-cre mice display normal glucose and lipid homeostasis. In addition, leptin administration in streptozotocin-induced diabetic Lepr flox/flox Gcg-cre mice restored euglycemia similarly to control mice. These findings suggest that loss of leptin receptor signaling in close to one-half of α-cells does not alter glucose metabolism in vivo, nor is it sufficient to prevent the therapeutic action of leptin in type 1 diabetes.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Angela Kim ◽  
Jakob G Knudsen ◽  
Joseph C Madara ◽  
Anna Benrick ◽  
Thomas Hill ◽  
...  

Insulin-induced hypoglycemia is a major barrier to the treatment of type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon - the body's principal blood glucose-elevating hormone which is secreted from alpha-cells of the pancreatic islets. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (from 8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro) and yet associates with dramatic changes in plasma glucagon in vivo. The identity of the systemic factor(s) that stimulates glucagon secretion remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Glucagon-secreting alpha-cells express high levels of the vasopressin 1b receptor gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide, a stable surrogate marker of AVP) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or vasopressin 1b receptor. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. Exogenous injection of AVP in vivo increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP in humans and this hormone stimulates glucagon secretion from isolated human islets. In patients with T1D, hypoglycemia failed to increase both plasma copeptin and glucagon levels. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.


2020 ◽  
Author(s):  
Angela Kim ◽  
Jakob G. Knudsen ◽  
Joseph C. Madara ◽  
Anna Benrick ◽  
Thomas Hill ◽  
...  

AbstractHypoglycaemia is a major barrier to the treatment of diabetes. Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon – the body’s principle blood glucose-elevating hormone which is secreted from alpha-cells of the pancreatic islets. In isolated islets, varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (from 8 to 4 mM) has no significant effect on glucagon secretion and yet associates with dramatic changes in plasma glucagon in vivo. The identity of the systemic factor that stimulates glucagon secretion in vivo remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Glucagon-secreting alpha-cells express high levels of the vasopressin 1b receptor (V1bR). Activation of AVP neurons in vivo increased circulating AVP, stimulated glucagon release and evoked hyperglycaemia; effects blocked by pharmacological antagonism of either the glucagon receptor or vasopressin 1b receptor. AVP also mediates the stimulatory effects of dehydration and hypoglycaemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata, which are known to be activated by hypoglycaemia, drive AVP neuron activation in response to insulin-induced hypoglycaemia. Hypoglycaemia also increases circulating levels of copeptin (derived from the same pre-pro hormone as AVP) levels in humans and this hormone stimulates glucagon secretion from isolated human islets. In patients with type 1 diabetes, hypoglycaemia failed to increase both plasma copeptin and glucagon. These findings provide a new mechanism for the central regulation of glucagon secretion in both health and disease.


2021 ◽  
Vol 9 (6) ◽  
pp. 1177
Author(s):  
Abdulaziz Alhazmi ◽  
Magloire Pandoua Nekoua ◽  
Hélène Michaux ◽  
Famara Sane ◽  
Aymen Halouani ◽  
...  

The thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Geiger ◽  
T. Janes ◽  
H. Keshavarz ◽  
S. Summers ◽  
C. Pinger ◽  
...  

Abstract People with type 1 diabetes (T1D) require exogenous administration of insulin, which stimulates the translocation of the GLUT4 glucose transporter to cell membranes. However, most bloodstream cells contain GLUT1 and are not directly affected by insulin. Here, we report that C-peptide, the 31-amino acid peptide secreted in equal amounts with insulin in vivo, is part of a 3-component complex that affects red blood cell (RBC) membranes. Multiple techniques were used to demonstrate saturable and specific C-peptide binding to RBCs when delivered as part of a complex with albumin. Importantly, when the complex also included Zn2+, a significant increase in cell membrane GLUT1 was measured, thus providing a cellular effect similar to insulin, but on a transporter on which insulin has no effect.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 959 ◽  
Author(s):  
Jefferson Antônio Leite ◽  
Gabriela Pessenda ◽  
Isabel C. Guerra-Gomes ◽  
Alynne Karen Mendonça de Santana ◽  
Camila André Pereira ◽  
...  

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


2006 ◽  
Vol 13 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Mette Ejrnaes ◽  
Matthias G. von Herrath ◽  
Urs Christen

The use of neutralizing antibodies is one of the most successful methods to interfere with receptor–ligand interactions in vivo. In particular blockade of soluble inflammatory mediators or their corresponding cellular receptors was proven an effective way to regulate inflammation and/or prevent its negative consequences. However, one problem that comes along with an effective neutralization of inflammatory mediators is the general systemic immunomodulatory effect. It is, therefore, important to design a treatment regimen in a way to strike at the right place and at the right time in order to achieve maximal effects with minimal duration of immunosuppression or hyperactivation. In this review, we reflect on two examples of how short time administration of such neutralizing antibodies can block two distinct inflammatory consequences of viral infection. First, we review recent findings that blockade of IL-10/IL-10R interaction can resolve chronic viral infection and second, we reflect on how neutralization of the chemokine CXCL10 can abrogate virus-induced type 1 diabetes.


Diabetologia ◽  
2019 ◽  
Vol 62 (12) ◽  
pp. 2252-2261 ◽  
Author(s):  
Johan Verhagen ◽  
Norkhairin Yusuf ◽  
Emma L. Smith ◽  
Emily M. Whettlock ◽  
Kerina Naran ◽  
...  

Abstract Aims/hypothesis The molecular basis for the pathological impact of specific HLA molecules on autoimmune diseases such as type 1 diabetes remains unclear. Recent natural history studies in children have indicated a link between specific HLA genotypes and the first antigenic target against which immune responses develop. We set out to examine this link in vivo by exploring the diabetogenicity of islet antigens on the background of a common diabetes-associated HLA haplotype. Methods We generated a novel HLA-transgenic mouse model that expresses high-risk genes for type 1 diabetes (DRB1*03:01-DQA1*05:01-DQB1*02:01) as well as human CD80 under the rat insulin promoter and human CD4, on a C57BL/6 background. Adjuvanted antigen priming was used to reveal the diabetogenicity of candidate antigens and peptides. Results HLA-DR3-DQ2+huCD4+IA/IE−/−RIP.B7.1+ mice spontaneously developed autoimmune diabetes (incidence 46% by 35 weeks of age), accompanied by numerous hallmarks of human type 1 diabetes (autoantibodies against GAD65 and proinsulin; pancreatic islet infiltration by CD4+, CD8+ B220+, CD11b+ and CD11c+ immune cells). Disease was markedly accelerated and had deeper penetrance after adjuvanted antigen priming with proinsulin (mean onset 11 weeks and incidence 100% by 20 weeks post challenge). Moreover, the diabetogenic effect of proinsulin located to the 15-residue B29-C11 region. Conclusions/interpretation Our study identifies a proinsulin-derived peptide region that is highly diabetogenic on the HLA-DR3-DQ2 background using an in vivo model. This approach and the peptide region identified may have wider implications for future studies of human type 1 diabetes.


Diabetologia ◽  
2019 ◽  
Vol 62 (8) ◽  
pp. 1517-1517
Author(s):  
Midhat H. Abdulreda ◽  
R. Damaris Molano ◽  
Gaetano Faleo ◽  
Maite Lopez-Cabezas ◽  
Alexander Shishido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document