Measurement of protein synthesis rates with [15N]glycine

1980 ◽  
Vol 239 (4) ◽  
pp. E294-E294 ◽  

[15N]glycine (95+%) was infused into 170- to 220-g rats at a constant rate of 2-8 mg [15N]glycine/h for 2-24 h. Two sets of experiments were done. In one set, the rats were killed at varying time intervals, the liver was removed, and the fractional rate of liver protein synthesis was estimated from the amount of 15N incorporated into liver protein, the enrichment of the liver tissue free amino nitrogen, and the time course. In the second set of experiments, the rats were killed after a [15N]glycine infusion of 18-22 h. The whole-body protein synthesis rate was estimated from the urinary 15N enrichment at plateau by the method of Picou and Taylor-Roberts (Clin. Sci. 36: 288-296, 1967). It was compared against the value found by measuring the 15N enrichment of the whole-rat homogenate and calculating the synthesis rate from the formula of Garlick et al. [Biochem. J. 136: 935-945, 1973). The results are i) The 15N enrichment of glycine in either liver protein or liver tissue free amino acids was proportional to the 15N enrichment of the mixed protein or tissue free amino acids, respectively. ii) Continuous infusion-isotopic plateau methods underestimate the fractional protein synthesis rate of rat liver. iii) The methods of Picou and Taylor-Roberts and of Garlick et al. gave similar values for the whole-body protein synthesis rate.

1991 ◽  
Vol 66 (3) ◽  
pp. 423-435 ◽  
Author(s):  
N. O. Cortamira ◽  
B. Seve ◽  
Y. Lebreton ◽  
P. Ganier

Two experiments were carried out with piglets, 3–5 kg live weight, to evaluate the effects of feeding a tryptophan (TRP)-deficient diet for 2 weeks on protein synthesis rates measured in vivo 2 h after a meal. In the first experiment on twenty piglets fed on 250 g protein/kg diets, TRP deficiency (0.77 g/16 g nitrogen) as compared with adequacy (1.17 g/16 g N) significantly decreased feed intake, growth performance and fractional protein synthesis rates (FSR), without variation of RNA in longissimus dorsi (LD) and with parallel increases in RNA in semitendinosus (ST) muscle and liver. In the second experiment thirty-two piglets were tube-fed deficient and adequate diets at the two feeding levels (LF) previously achieved. Both TRP and LF significantly increased growth performance and FSR, but not RNA, in LD and ST muscle, with a trend to a synergy between the two factors (TRP x LF interaction). In another muscle, trapezius (TR), the same interaction was only apparent in RNA content. Among the three muscles it was in LD that FSR was the most responsive to dietary TRP (significant muscle x TRP interaction). In the liver the TRP x LF interaction on FSR and not RNA was the major significant effect, indicating that higher TRP and higher LF were both required to get the maximum protein synthesis rate. At 30 min after a meal the same significant interaction effect was shown on plasma glucose, whilst the higher LF increased plasma insulin with both diets. After a further 30 min the appearance of a similar significant effect of the TRP x LF interaction on plasma insulin resulted from its abatement when the deficient diet had been fed at high LF. These results suggest that dietary TRP deficiency decreased muscle and liver protein synthesis rates in relation to a decrease in the post-prandial release of insulin following a decreased rate of nutrient absorption.


1978 ◽  
Vol 234 (6) ◽  
pp. E648
Author(s):  
T P Stein ◽  
J L Mullen ◽  
J C Oram-Smith ◽  
E F Rosato ◽  
H W Wallace ◽  
...  

Fractional protein synthesis rates of tumor, normal intestinal tissue, liver, and fibrinogen were measured in a series of patients with gastrointestinal malignancies. Protein synthesis rates were measured by the continuous infusion of 95+% [15N]glycine. Twelve to eighteen hours prior to the clinically indicated surgical excision of the tumor, 1-2 g of 95+% [15N]glycine was infused at a constant rate into each subject. During the surgical procedure, 0.05-2 g of tumor, normal intestinal tissue, liver, and 30 ml of venous blood were obtained. Protein synthesis rates were estimated from the ratio of 15N incorporated into tissue protein to the 15N enrichment of the tissue-free amino acid pool. The major findings were: i) the 15N enrichment of the tissue-free amino acids in malignant tissue was greater than and proportional to that in the corresponding normal tissue (P less than 0.02); ii) tumor protein synthesis rates were greater and proportional to the corresponding intestinal tissue rates (P less than 0.05); iii) the fibrinogen synthesis rate was greater than the liver protein synthesis rate (P less than 0.01), but there was no correlation between them.


1993 ◽  
Vol 264 (5) ◽  
pp. E824-E828 ◽  
Author(s):  
T. P. Stein ◽  
M. J. Leskiw ◽  
M. D. Schluter

Nitrogen balance and the whole body protein synthesis rate were measured before, during, and after a 9.5-day spaceflight mission on the space shuttle Columbia. Protein synthesis was measured by the single-pulse [15N]glycine method. Determinations were made 56, 26, and 18 days preflight, on flight days 2 and 8, and on days 0, 6, 14, and 45 postflight. We conclude that nitrogen balance was decreased during spaceflight. The decrease in nitrogen balance was greatest on the 1st day when food intake was reduced and again toward the end of the mission. An approximately 30% increase in protein synthesis above the preflight baseline was found for flight day 8 for all 6 subjects (P < 0.05), indicating that the astronauts showed a stress response to spaceflight.


1998 ◽  
Vol 275 (4) ◽  
pp. E577-E583 ◽  
Author(s):  
Kevin E. Yarasheski ◽  
Jeffrey J. Zachwieja ◽  
Jennifer Gischler ◽  
Jan Crowley ◽  
Mary M. Horgan ◽  
...  

Muscle protein wasting occurs in human immunodeficiency virus (HIV)-infected individuals and is often the initial indication of acquired immunodeficiency syndrome (AIDS). Little is known about the alterations in muscle protein metabolism that occur with HIV infection. Nine subjects with AIDS wasting (CD4 < 200/mm3), chronic stable opportunistic infections (OI), and ≥10% weight loss, fourteen HIV-infected men and one woman (CD4 > 200/mm3) without wasting or OI (asymptomatic), and six HIV-seronegative lean men (control) received a constant intravenous infusion of [1-13C]leucine (Leu) and [2-15N]glutamine (Gln). Plasma Leu and Gln rate of appearance (Ra), whole body Leu turnover, disposal and oxidation rates, and [13C]Leu incorporation rate into mixed muscle protein were assessed. Total body muscle mass/fat-free mass was greater in controls (53%) than in AIDS wasting (43%; P = 0.04). Fasting whole body proteolysis and synthesis rates were increased above control in the HIV+ asymptomatic group and in the AIDS-wasting group ( P = 0.009). Whole body Leu oxidation rate was greater in the HIV+ asymptomatic group than in the control and AIDS-wasting groups ( P < 0.05). Fasting mixed muscle protein synthesis rate was increased in the asymptomatic subjects (0.048%/h; P = 0.01) but was similar in AIDS-wasting and control subjects (0.035 vs. 0.037%/h). Plasma Gln Rawas increased in AIDS-wasting subjects but was similar in control and HIV+ asymptomatic subjects ( P < 0.001). These findings suggest that AIDS wasting results from 1) a preferential reduction in muscle protein, 2) a failure to sustain an elevated rate of mixed muscle protein synthesis while whole body protein synthesis is increased, and 3) a significant increase in Gln release into the circulation, probably from muscle. Several interesting explanations for the increased Gln Rain AIDS wasting exist.


1996 ◽  
Vol 75 (2) ◽  
pp. 217-235 ◽  
Author(s):  
G. E. Lobley ◽  
A. Connell ◽  
D. K. Revell ◽  
B. J. Bequette ◽  
D. S. Brown ◽  
...  

AbstractThe response in whole-body and splanchnic tissue mass and isotope amino acid transfers in both plasma and blood has been studied in sheep offered 800 g lucerne (Medicago sutiva) pellets/d. Amino acid mass transfers were quantified over a 4 h period,by arterio-venous procedures, across the portal-drained viscera (PDV) and liver on day 5 of an intravenous infusion of either vehicle or the methylated products, choline (0.5 g/d) plus creatine (10 g/d). Isotopic movements were monitored over the same period during a 10 h infusion of a mixture of U-13C-labelled amino acids obtained from hydrolysis of labelled algal cells. Sixteen amino acids were monitored by gas chromatography-mass spectrometry, with thirteen of these analysed within a single chromatographic analysis. Except for methionine, which is discussed in a previous paper, no significant effects of choline plus creatine infusion were observed on any of the variables reported. Whole-body protein irreversible-loss rates ranged from 158 to 245 g/d for the essential amino acids, based on the relative enrichments (dilution of the U-13C molecules by those unlabelled) of free amino acids in arterial plasma, and 206-519 g/d, when blood free amino acid relative enrichments were used for the calculations. Closer agreement was obtained between lysine, threonine, phenylalanine and the branched-chain amino acids. Plasma relative enrichments always exceeded those in blood (P < 0.001), possibly due to hydrolysis of peptides or degradation of protein within the erythrocyte or slow equilibration between plasma and the erythrocyte. Net absorbed amino acids across the PDV were carried predominantly in the plasma. Little evidence was obtained of any major and general involvement of the erythrocytes in the transport of free amino acids from the liver. Net isotope movements also supported these findings. Estimates of protein synthesis rates across the PDV tissues from [U-13C] leucine kinetics showed good agreement with previous values obtained with single-labelled leucine. Variable rates were obtained between the essential amino acids, probably due to different intracellular dilutions. Isotope dilution across the liver was small and could be attributed predominantly to uni-directional transfer from extracellular sources into the hepatocytes and this probably dominates the turnover of the intracellular hepatic amino acid pools.


2007 ◽  
Vol 87 (3) ◽  
pp. 315-325 ◽  
Author(s):  
E. N. Bermingham ◽  
W. C. McNabb ◽  
I. A. Sutherland ◽  
B. R. Sinclair ◽  
B. P. Treloar ◽  
...  

The effects of an established Trichostrongylus colubriformis infection on the whole-body and fractional protein synthesis rates in the small intestine, liver, lymphoid tissues, skeletal muscle and skin were determined in lambs fed fresh Lucerne (Medicago sativa; 800 g DM d-1) on day 48 post-infection. Lambs were dosed with 6000 L3 T. colubriformis larvae for 6 d (n = 5) or kept as parasite-free controls (n = 6). On day 45, the lambs received a bolus injection of deuterated water to measure the size of the whole-body water pool. On day 48, the lambs were continuously infused with [3, 4-3H]-valine into the jugular vein and [1-13C]-valine in the abomasum for 8 h. During the infusion, mesenteric artery blood and terminal tissue samples were collected for measuring the isotopic activity of plasma water, plasma valine, intra cellular valine and protein-bound valine. Intestinal worm numbers on day 48 were higher (P < 0.001) in the infected lambs, however, there was no effect (P > 0.10) of parasitic infection on feed intake, liveweight gain, whole-body protein synthesis and fractional protein synthesis of most tissues. Key words: Parasite infection, protein synthesis, lambs


2013 ◽  
Vol 304 (3) ◽  
pp. G300-G310 ◽  
Author(s):  
Patrycja Puiman ◽  
Barbara Stoll ◽  
Lars Mølbak ◽  
Adrianus de Bruijn ◽  
Henk Schierbeek ◽  
...  

We examined whether changes in the gut microbiota induced by clinically relevant interventions would impact the bioavailability of dietary amino acids in neonates. We tested the hypothesis that modulation of the gut microbiota in neonatal pigs receiving no treatment (control), intravenously administered antibiotics, or probiotics affects whole body nitrogen and amino acid turnover. We quantified whole body urea kinetics, threonine fluxes, and threonine disposal into protein, oxidation, and tissue protein synthesis with stable isotope techniques. Compared with controls, antibiotics reduced the number and diversity of bacterial species in the distal small intestine (SI) and colon. Antibiotics decreased plasma urea concentrations via decreased urea synthesis. Antibiotics elevated threonine plasma concentrations and turnover, as well as whole body protein synthesis and proteolysis. Antibiotics decreased protein synthesis rate in the proximal SI and liver but did not affect the distal SI, colon, or muscle. Probiotics induced a bifidogenic microbiota and decreased plasma urea concentrations but did not affect whole body threonine or protein metabolism. Probiotics decreased protein synthesis in the proximal SI but not in other tissues. In conclusion, modulation of the gut microbiota by antibiotics and probiotics reduced hepatic ureagenesis and intestinal protein synthesis, but neither altered whole body net threonine balance. These findings suggest that changes in amino acid and nitrogen metabolism resulting from antibiotic- or probiotic-induced shifts in the microbiota are localized to the gut and liver and have limited impact on whole body growth and anabolism in neonatal piglets.


1992 ◽  
Vol 262 (3) ◽  
pp. E261-E267 ◽  
Author(s):  
K. E. Yarasheski ◽  
J. A. Campbell ◽  
K. Smith ◽  
M. J. Rennie ◽  
J. O. Holloszy ◽  
...  

The purpose of this study was to determine whether growth hormone (GH) administration enhances the muscle anabolism associated with heavy-resistance exercise. Sixteen men (21-34 yr) were assigned randomly to a resistance training plus GH group (n = 7) or to a resistance training plus placebo group (n = 9). For 12 wk, both groups trained all major muscle groups in an identical fashion while receiving 40 micrograms recombinant human GH.kg-1.day-1 or placebo. Fat-free mass (FFM) and total body water increased (P less than 0.05) in both groups but more (P less than 0.01) in the GH recipients. Whole body protein synthesis rate increased more (P less than 0.03), and whole body protein balance was greater (P = 0.01) in the GH-treated group, but quadriceps muscle protein synthesis rate, torso and limb circumferences, and muscle strength did not increase more in the GH-treated group. In the young men studied, resistance exercise with or without GH resulted in similar increments in muscle size, strength, and muscle protein synthesis, indicating that 1) the larger increase in FFM with GH treatment was probably due to an increase in lean tissue other than skeletal muscle and 2) resistance training supplemented with GH did not further enhance muscle anabolism and function.


1997 ◽  
Vol 273 (5) ◽  
pp. E898-E902 ◽  
Author(s):  
Odile Mansoor ◽  
Marc Cayol ◽  
Pierre Gachon ◽  
Yves Boirie ◽  
Pierre Schoeffler ◽  
...  

The effect of trauma on protein metabolism was investigated in the whole body, muscle, and liver in severely head-injured patients presenting an acute inflammatory response by comparison to fed control subjects receiving a similar diet. Nonoxidative leucine disposal (an index of whole body protein synthesis) and muscle, albumin, and fibrinogen synthesis were determined by means of a primed, continuous infusion ofl-[1-13C]leucine. Nonoxidative leucine disposal increased by 28% in the patients ( P < 0.02). Fractional muscle protein synthesis rate decreased by 50% ( P < 0.01) after injury. Fractional and absolute fribrinogen synthesis rates were multiplied by two and nine, respectively, after injury ( P< 0.001). Albumin levels were lower in patients (25.2 ± 1.2 g/l, means ± SE) than in controls (33.7 ± 1.2 g/l, P < 0.001). However, fractional albumin synthesis rates were increased by 60% in patients (11.4 ± 1.0%/day) compared with controls (7.3 ± 0.4%/day, P < 0.01). Therefore, 1) head trauma induces opposite and large changes of protein synthesis in muscle and acute-phase hepatic proteins, probably mediated by cytokines, glucocorticoids, and other stress hormones, and 2) in these patients, hypoalbuminemia is not due to a depressed albumin synthesis.


2006 ◽  
Vol 291 (3) ◽  
pp. E582-E586 ◽  
Author(s):  
S. Osowska ◽  
T. Duchemann ◽  
S. Walrand ◽  
A. Paillard ◽  
Y. Boirie ◽  
...  

Protein energy malnutrition is common in the elderly, especially in hospitalized patients. The development of strategies designed to correct such malnutrition is essential. Our working hypothesis was that poor response to nutrition with advancing age might be related to splanchnic sequestration of amino acids, which implies that fewer amino acids reach the systemic circulation. Administration of citrulline, which is not taken up by the liver, can offer a means of increasing whole body nitrogen availability and, hence, improve nutritional status. Thirty old (19 mo) rats were submitted to dietary restriction (50% of food intake) for 12 wk. They were randomized into three groups: 10 rats (R group) were killed and 20 others refed (90% of food intake) for 1 wk with a standard diet (NEAA group) or a citrulline-supplemented diet (Cit group). Before being killed, the rats were injected with [13C]valine, and the absolute protein synthesis rate (ASR) was measured in the tibialis using the flooding-dose method. When the rats were killed, the tibialis was removed for protein content analysis. Blood was sampled for amino acid and insulin analysis. The standard diet did not have any effect on protein synthesis or on the protein content in the muscle. Citrulline supplementation led to higher protein synthesis and protein content in muscle (117 ± 9, 120 ± 14, and 163 ± 4 mg/organ for protein content in R, NEAA, and Cit groups, P < 0.05). The ASR were 0.30 ± 0.04, 0.31 ± 0.04, and 0.56 ± 0.10 mg/h in the three groups, respectively (R and NEAA vs. Cit, P < 0.05). Insulinemia was significantly higher in the Cit group. For the first time, a realistic therapeutic approach is proposed to improve muscle protein content in muscle in frail state related to malnutrition in aging.


Sign in / Sign up

Export Citation Format

Share Document