Low oxygen selectively inhibits aldosterone secretion from bovine adrenocortical cells in vitro

1989 ◽  
Vol 256 (5) ◽  
pp. E640-E644 ◽  
Author(s):  
H. Raff ◽  
D. L. Ball ◽  
T. L. Goodfriend

Systemic hypoxia has been reported to inhibit selectively aldosterone secretion in vivo. The mechanism of this inhibition has not been elucidated. We hypothesized that decreased tissue PO2 directly inhibited aldosteronogenesis. To test this hypothesis, we exposed dispersed adrenocortical cells (90% glomerulosa/10% fasciculata) to decreased PO2 in vitro while simultaneously stimulating aldosterone secretion with angiotensin II, N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (dibutyryl cAMP) adrenocorticotropic hormone (ACTH)-(1-24), or progesterone. Decreasing buffer PO2 from approximately 150 to approximately 85 Torr significantly inhibited basal and angiotensin II, cAMP, progesterone, and ACTH-stimulated aldosterone secretion at all doses of secretagogue. Inhibition was largest for angiotensin II (55 +/- 9% inhibition at 1 microM) and cAMP (54 +/- 8% at 3 mM) and lowest for ACTH (24% at 100 nM) and basal aldosterone secretion (31 +/- 7%). This inhibition was reversed by returning the buffer PO2 to 150 Torr. Cortisol secretion was not significantly inhibited by decreased buffer PO2. We conclude that decreased buffer PO2 significantly inhibits aldosterone secretion in vitro, and this inhibition is reversible and specific. Hypoxia-induced inhibition of aldosterone secretion in vivo may be caused, at least in part, by a direct effect of low tissue PO2 within the adrenal cortex.

2000 ◽  
Vol 166 (1) ◽  
pp. 183-194 ◽  
Author(s):  
RE Kramer ◽  
TV Robinson ◽  
EG Schneider ◽  
TG Smith

Disturbances in acid-base balance in vivo are associated with changes in plasma aldosterone concentration, and in vitro changes in extracellular pH (pH(o)) influence the secretion of aldosterone by adrenocortical tissue or glomerulosa cells. There is considerable disparity, however, as to the direction of the effect. Furthermore, the mechanisms by which pH(o) independently affects aldosterone secretion or interacts with other secretagogues are not defined. Thus, bovine glomerulosa cells maintained in primary monolayer culture were used to examine the direct effects of pH(o) on cytosolic free calcium concentration ([Ca(2+)](i))( )and aldosterone secretion under basal and angiotensin II (AngII)-stimulated conditions. pH(o) was varied from 7.0 to 7.8 (corresponding inversely to changes in extracellular H(+) concentration from 16 nM to 100 nM). Whereas an elevation of pH(o) from 7.4 to 7.8 had no consistent effect, reductions of pH(o) from 7.4 to 7.2 or 7.0 caused proportionate increases in aldosterone secretion that were accompanied by increases in transmembrane Ca(2+) fluxes and [Ca(2+)](i). These effects were abolished by removal of extracellular Ca(2+). A decrease in pH(o) from 7.4 to 7.0 also enhanced AngII-stimulated aldosterone secretion. This effect was more pronounced at low concentrations of AngII and was manifested as an increase in the magnitude of the secretory response with no effect on potency. In contrast to its effect on AngII-stimulated aldosterone secretion, a reduction of pH(o) from 7.4 to 7.0 inhibited the Ca(2+) signal elicited by low concentrations (</=1x10(-10) M) of AngII, but did not affect the increase in [Ca(2+)](i) caused by a maximal concentration (1x10(-8) M) of AngII. These data suggest that pH(o) (i.e. H(+)) has multiple effects on aldosterone secretion. It independently increases aldosterone secretion through a mechanism involving Ca(2+) influx and an increase in [Ca(2+)](i). Also, it modulates the action of AngII by both decreasing the magnitude of the AngII-stimulated Ca(2+) signal and increasing the sensitivity of a more distal site to intracellular Ca(2+). The latter action appears to be a more important determinant in the effects of pH(o) on AngII-stimulated aldosterone secretion.


1985 ◽  
Vol 104 (3) ◽  
pp. 387-395 ◽  
Author(s):  
J. P. Hinson ◽  
G. P. Vinson ◽  
B. J. Whitehouse ◽  
G. Price

ABSTRACT The extent to which results obtained using in-vitro techniques can be taken to reflect in-vivo physiological responses in the study of adrenocortical function has not been subjected to systematic study. Some evidence suggests that in-vitro preparative methods may affect the secreted steroid profile. For this reason it seemed desirable to study adrenal function using an isolated perfused whole gland technique, and this study reports results obtained with known aldosterone stimulants. Angiotensin II, ACTH and potassium ions all stimulated aldosterone secretion in a dose-dependent manner. The stimulation thresholds of these substances were compatible with their normal circulating concentrations. For angiotensin II stimulation this preparation was two orders of magnitude more sensitive than any in-vitro preparation. Most importantly, the specific glomerulosa effectors, angiotensin II and potassium, selectively stimulated aldosterone output, and had no consistent effect on corticosterone secretion at any dose used. On the other hand, ACTH stimulated both corticosterone and aldosterone output at all effective concentrations. The actions of α-MSH were also studied using this preparation. Low doses of α-MSH selectively stimulated aldosterone secretion, while higher doses were needed to stimulate corticosterone. The onset of response to all stimulants was invariably seen within the first 10 min after administration of stimulants. Maximal aldosterone output was achieved within the first 10 min whereas corticosterone secretion usually peaked 10–20 min later. The amount of aldosterone produced by this preparation was much higher than the amount produced by dispersed cell preparations, and closely approximated to the levels of aldosterone obtained in adrenal vein blood. The data indicate that the isolated circulation perfused gland system is a sensitive preparation which approximates to the physiological condition. In particular, aldosterone is the prominent glomerulosa product, and corticosterone is, in this system, a more specific marker for inner zone function. J. Endocr. (1985) 104, 387–395


1983 ◽  
Vol 104 (4) ◽  
pp. 495-501 ◽  
Author(s):  
Tetsuro Okabe ◽  
Hiroshi Hidaka ◽  
Nakaaki Ohsawa ◽  
Toshio Tsushima

Abstract. In an attempt to obtain an in vitro experimental model for aldosteronoma, primary culture was initiated with adenomas from 3 patients with primary aldosteronism. The cells grown in culture retained the morphology and functional properties characteristic of aldosteronoma cells well for periods of up to 200 days. The cells formed monolayer cell colonies and showed an epithelioid morphology with small nuclei containing prominent nucleoli. The cells possessed a clear, eosinophilic cytoplasm resembling that of aldosteronoma cells in vivo. The cultured cells continued to secrete large amounts of aldosterone throughout the culture period. The cells responded to angiotensin II and III by increased release of aldosterone into the culture medium. They also responded to Db-cAMP and ACTH by increased secretion of the hormone.


Life Sciences ◽  
2021 ◽  
pp. 119728
Author(s):  
Fatemeh Dehghani Nazhvani ◽  
Leila Mohammadi Amirabad ◽  
Arezo Azari ◽  
Hamid Namazi ◽  
Simzar Hosseinzadeh ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Tina Schönberger ◽  
Joachim Fandrey ◽  
Katrin Prost-Fingerle

Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.


2013 ◽  
Vol 168 (6) ◽  
pp. R85-R93 ◽  
Author(s):  
Felix Beuschlein

Arterial hypertension is a major cardiovascular risk factor that affects between 10 and 40% of the population in industrialized countries. Primary aldosteronism (PA) is the most common form of secondary hypertension with an estimated prevalence of around 10% in referral centers and 4% in a primary care setting. Despite its high prevalence until recently, the underlying genetic and molecular basis of this common disease had remained largely obscure. Over the past decade, a number of insights have been achieved that have relied onin vitrocellular systems, wild-type and genetically modifiedin vivomodels, as well as clinical studies in well-characterized patient populations. This progress has been made possible by a number of independent technical developments including that of specific hormone assays that allow measurement in small sample volumes as well as genetic techniques that enable high-throughput sequencing of a large number of samples. Furthermore, animal models have provided important insights into the physiology of aldosterone regulation that have served as a starting point for investigation of mechanisms involved in autonomous aldosterone secretion. Finally, national and international networks that have built up registries and biobanks have been instrumental in fostering translational research endeavors in PA. Therefore, it is to be expected that in the near future, further pathophysiological mechanisms that result in autonomous aldosterone secretion will be unraveled.


2007 ◽  
Vol 292 (1) ◽  
pp. E272-E280 ◽  
Author(s):  
Francesca Ietta ◽  
Yuanhong Wu ◽  
Roberta Romagnoli ◽  
Nima Soleymanlou ◽  
Barbara Orsini ◽  
...  

Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine involved in regulation of macrophage function. In addition, MIF may also play a role in murine and human reproduction. Although both first trimester trophoblast and decidua express MIF, the regulation and functional significance of this cytokine during human placental development remains unclear. We assessed MIF expression throughout normal human placental development, as well as in in vitro (chorionic villous explants) and in vivo (high altitude placentae) models of human placental hypoxia. Dimethyloxalylglycine (DMOG), which stabilizes hypoxia inducible factor-1 under normoxic conditions, was also used to mimic the effects of hypoxia on MIF expression. Quantitative real-time PCR and Western blot analysis showed high MIF protein and mRNA expression at 7–10 wk and lower levels at 11–12 wk until term. Exposure of villous explants to 3% O2 resulted in increased MIF expression and secretion relative to standard conditions (20% O2). DMOG treatment under 20% O2 increased MIF expression. In situ hybridization and immunohistochemistry showed elevated MIF expression in low oxygen-induced extravillous trophoblast cells. Finally, a significant increase in MIF transcript was observed in placental tissues from high-altitude pregnancies. Hence, three experimental models of placental hypoxia (early gestation, DMOG treatment, and high altitude) converge in stimulating increased MIF, supporting the conclusion that placental-derived MIF is an oxygen-responsive cytokine highly expressed in physiological in vivo and in in vitro low oxygen conditions.


2005 ◽  
Vol 187 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Lauren M. Mashburn ◽  
Amy M. Jett ◽  
Darrin R. Akins ◽  
Marvin Whiteley

ABSTRACT Pseudomonas aeruginosa is a gram-negative opportunistic human pathogen often infecting the lungs of individuals with the heritable disease cystic fibrosis and the peritoneum of individuals undergoing continuous ambulatory peritoneal dialysis. Often these infections are not caused by colonization with P. aeruginosa alone but instead by a consortium of pathogenic bacteria. Little is known about growth and persistence of P. aeruginosa in vivo, and less is known about the impact of coinfecting bacteria on P. aeruginosa pathogenesis and physiology. In this study, a rat dialysis membrane peritoneal model was used to evaluate the in vivo transcriptome of P. aeruginosa in monoculture and in coculture with Staphylococcus aureus. Monoculture results indicate that approximately 5% of all P. aeruginosa genes are differentially regulated during growth in vivo compared to in vitro controls. Included in this analysis are genes important for iron acquisition and growth in low-oxygen environments. The presence of S. aureus caused decreased transcription of P. aeruginosa iron-regulated genes during in vivo coculture, indicating that the presence of S. aureus increases usable iron for P. aeruginosa in this environment. We propose a model where P. aeruginosa lyses S. aureus and uses released iron for growth in low-iron environments.


Sign in / Sign up

Export Citation Format

Share Document