Effect of growth hormone administration and treadmill exercise on serum and skeletal IGF-I in rats

1994 ◽  
Vol 266 (1) ◽  
pp. E129-E135 ◽  
Author(s):  
J. K. Yeh ◽  
J. F. Aloia ◽  
M. Chen ◽  
N. Ling ◽  
H. C. Koo ◽  
...  

Growth factors may be mediators of local and systemic factors that enhance bone formation. This study examined the effect of treadmill exercise and ovine growth hormone administration on levels of insulin-like growth factor I (IGF-I) in serum (ng/ml), long bone, and vertebrae and on bone formation rate. Forty female rats were divided into four groups: control; exercise (17 m/min, 1 h/day); growth hormone (0.05 mg.100 g-1.day-1); growth hormone plus exercise. After 9 wk of study, the serum levels of IGF-I were higher in the intervention groups than in the control group; however, the IGF-I concentration and the periosteal bone formation rate in the long bone were significantly higher only in the exercised rats. The IGF-I concentration and the cancellous bone formation rate in the vertebrae did not differ among the experimental groups. The vertebral and long bone formation rate were correlated with bone concentrations of IGF-I. Serum levels of IGF-I were also correlated with serum osteocalcin and the long bone formation but not with the vertebral bone formation. The association of bone formation with serum and bone IGF-I supports the suggestion that IGF-I is one of the growth factors that regulate bone formation, in particular as a mediator of the response of bone to exercise.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 247-247
Author(s):  
Sahar Hiram-Bab ◽  
Naamit Deshet ◽  
Tamar Liron ◽  
Moshe Mittelman ◽  
Max Gassmann ◽  
...  

Abstract The negative effect of hypoxia on bone metabolism is well established but its mechanism of action is not fully understood. Hypoxia triggers the production of erythropoietin (EPO), a hormone most recognized for its hematopoietic function. An increasing number of roles unrelated to red blood cell production have been attributed to EPO, many of which are mediated by non-erythroid cells. In light of the controversy on the effect of increased serum levels of EPO on the skeleton, we investigated here the effect of the hormone on bone metabolism using EPO overexpressing (Tg6), and EPO-administered adult mice. In these models, the increase in EPO levels is similar to its physiologic increase at high altitude without the confounding direct effect of hypoxia on bone cells. Using microcomputed tomography, histology and serum markers we found that high EPO levels result in a severe trabecular bone loss (-32 to -61% decrease in bone density in Tg6 and EPO-injected animals, respectively; p<0.05 versus their respective controls throughout), due to increased bone resorption (+28 to +18% in TRAP5b serum levels) and reduced bone formation rate (-19 to -74%). This bone loss consisted of reduced trabecular number, but not thickness, with no effect on the cortical bone compartment. A similar bone response was observed with high and low doses of EPO, with no difference between intermittent and continuous administration modes. Using flow cytometry analysis and specific cell surface markers, we found that EPO (both overexpression and injection) targets the monocytic lineage by increasing the number of CD115+CD265- monocytes/macrophages by 43 and 57% (p<0.05), CD115+ CD265+ pre-osteoclasts by 2 and 4-fold (p=0.02) and mature osteoclasts (TRAP positive) by 64 and 88% (p<0.05, Figure 1A) in bones, compared to WT and diluent controls, respectively. EPO has direct stimulatory effects in vitro on both macrophages and preosteoclasts thus coupling immune and skeletal systems, Activation of purified BM-derived macrophages with EPO, led to a 33% increase (p=0.01) in phagocytosis of 5T33 multiple myeloma cells. EPO strongly stimulated osteoclastogenesis (TRAP staining, Figure 1B) and pit resorption (measured in calcium-phosphate-coated wells) in a cell-autonomous manner. Furthermore, our data indicate that EPO receptor (EPO-R) signaling in osteoclast precursors involves the Jak2 and PI3K pathways, but is independent of the MAPK/MEK pathway. In addition to the direct effect of EPO on monocyte derived cells, high EPO also led to a 1.6 fold (p=0.03) increase in the transcript levels of the osteoclastogenic cytokine RANKL in total bone marrow. Notably, the major sources of RANKL are B cells and osteoblasts, and our data indicate that both cell types express EPO-R, suggesting that they are direct targets of EPO. Accordingly we found an EPO-related increase in membrane bound RANKL on B cells (1.8-fold, p=0.0003) and osteoblasts (1.16-fold, p=0.001) isolated from bone marrow (Figure 1C). To test whether EPO-R on osteoblasts also mediates the attenuation of bone formation, we treated isolated osteoblasts with EPO. However, EPO treatment in vitro did not inhibit osteoblast differentiation and activity, as demonstrated by RT-qPCR of marker genes and mineralization assays. Taken together, these findings demonstrate that EPO strongly regulates bone mass by stimulating osteoclastogenesis and attenuating bone formation. The osteoclastogenic action of EPO is mediated both directly by EPO-R on the monocytic lineage and indirectly via EPO-R signaling on B cells and osteoblasts. Regarding bone formation, the negative effect of EPO on bone formation rate in vivo was not reproduced in isolated cells, thus implying the involvement of cells beyond the osteoblastic lineage. We also propose a new mechanism for hypoxia-induced bone loss that involves EPO action on monocytic, B cell and osteoblastic lineages. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 5 (8) ◽  
pp. eaax2476 ◽  
Author(s):  
S. Herberg ◽  
A. M. McDermott ◽  
P. N. Dang ◽  
D. S. Alt ◽  
R. Tang ◽  
...  

Endochondral ossification during long bone development and natural fracture healing initiates by mesenchymal cell condensation, directed by local morphogen signals and mechanical cues. Here, we aimed to mimic development for regeneration of large bone defects. We hypothesized that engineered human mesenchymal condensations presenting transforming growth factor–β1 (TGF-β1) and/or bone morphogenetic protein-2 (BMP-2) from encapsulated microparticles promotes endochondral defect regeneration contingent on in vivo mechanical cues. Mesenchymal condensations induced bone formation dependent on morphogen presentation, with BMP-2 + TGF-β1 fully restoring mechanical function. Delayed in vivo ambulatory loading significantly enhanced the bone formation rate in the dual morphogen group. In vitro, BMP-2 or BMP-2 + TGF-β1 initiated robust endochondral lineage commitment. In vivo, however, extensive cartilage formation was evident predominantly in the BMP-2 + TGF-β1 group, enhanced by mechanical loading. Together, this study demonstrates a biomimetic template for recapitulating developmental morphogenic and mechanical cues in vivo for tissue engineering.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Ima Nirwana Soelaiman ◽  
Wang Ming ◽  
Roshayati Abu Bakar ◽  
Nursyahrina Atiqah Hashnan ◽  
Hanif Mohd Ali ◽  
...  

Postmenopausal osteoporosis is the commonest cause of osteoporosis. It is associated with increased free radical activity induced by the oestrogen-deficient state. Therefore, supplementation with palm-oil-derived tocotrienols, a potent antioxidant, should be able to prevent this bone loss. Our earlier studies have shown that tocotrienol was able to prevent and even reverse osteoporosis due to various factors, including oestrogen deficiency. In this study we compared the effects of supplementation with palm tocotrienol mixture or calcium on bone biomarkers and bone formation rate in ovariectomised (oestrogen-deficient) female rats. Our results showed that palm tocotrienols significantly increased bone formation in oestrogen-deficient rats, seen by increased double-labeled surface (dLS/Bs), reduced single-labeled surface (sLS/BS), increased mineralizing surface (MS/BS), increased mineral apposition rate (MAR), and an overall increase in bone formation rate (BFR/BS). These effects were not seen in the group supplemented with calcium. However, no significant changes were seen in the serum levels of the bone biomarkers, osteocalcin, and cross-linked C-telopeptide of type I collagen, CTX. In conclusion, palm tocotrienol is more effective than calcium in preventing oestrogen-deficient bone loss. Further studies are needed to determine the potential of tocotrienol as an antiosteoporotic agent.


2019 ◽  
Author(s):  
Nicholas J. Hanne ◽  
Andrew J. Steward ◽  
Marci R. Sessions ◽  
Hannah L. Thornburg ◽  
Huaxin Sheng ◽  
...  

ABSTRACTIschemic stroke induces rapid loss in bone mineral density that is up to 13 times greater than during normal aging, leading to a markedly increased risk of fracture. Little is known about skeletal changes following stroke beyond density loss. In this study we use a mild-moderate middle cerebral artery occlusion model to determine the effects of ischemic stroke without bedrest on bone microstructure, dynamic bone formation, and tissue composition. Twenty-seven 12-week-old male C57Bl/6J mice received either a stroke or sham surgery and then either received daily treadmill exercise or remained sedentary for four weeks. All mice were ambulatory immediately following stroke, and limb coordination during treadmill exercise was unaffected by stroke, indicating similar mechanical loading across limbs for both stroke and sham groups. Stroke did not directly detriment microstructure, but exercise only stimulated adaptation in the sham group, not the stroke group, with increased bone volume fraction and trabecular thickness in the sham distal femoral metaphysis. Stroke differentially decreased cortical area in the affected limb relative to the unaffected limb of the distal femoral metaphysis, as well as endosteal bone formation rate in the affected tibial diaphysis. Although exercise failed to improve bone microstructure following stroke, exercise increased mineral-to-matrix content in stroke but not sham. Together, these results show that stroke inhibits exercise-induced changes to femoral microstructure but not tibial composition, even without changes to gait. Similarly, affected-unaffected limb differences in cortical bone structure and bone formation rate in ambulatory mice show that stroke affects bone health even without bedrest.


1997 ◽  
Vol 82 (4) ◽  
pp. 1202-1209
Author(s):  
D. A. Sass ◽  
C. P. Jerome ◽  
A. R. Bowman ◽  
A. Bennett-Cain ◽  
T. A. Ginn ◽  
...  

Abstract The purpose of our study was to determine the effects of GH and insulin-like growth factor I (IGF-I) administration singly and in combination on vertebral, tibial, and femoral bone in aged female monkeys as well as the various treatment effects on serum hormone levels and osteocalcin gene expression. Twenty-one ovulating female monkeys (rhesus macaque), aged 16–20 yr (5–6 kg), were divided into four groups to receive the following treatment for 7 weeks via Alzet pumps inserted sc: A, eluant (control group); B, recombinant human IGF-I (rhIGF-I; 120 μg/kg·day); C) rhGH (100 μg/kg·day); D, combination of rhIGF-I (120 μg/kg·day) and rhGH (100μ g/kg·day). Serum was assayed serially for glucose, IGF-I, GH, and IGF-binding protein-3 levels. All groups received double labeling with calcein. On the day of death, the primates’ second lumbar vertebrae, tibiae, and femora were carefully dissected, fixed in 70% ethanol, and subjected to histomorphometric analysis. Ribonucleic acid was extracted from contralateral tibiae for the purpose of osteocalcin gene expression analysis. Serum glucose was unaffected by treatment. Serum GH was significantly elevated in groups C and D, whereas serum IGF-I and IGFBP-3 were only significantly increased in group D. Histomorphometric analysis showed no significant differences or trends for bone volume in any treatment group. Bone formation rate, surface and/or bone volume referent were significantly higher in both groups treated with GH (C and D) in tibia and femur, with a similar trend in vertebrae. The increase in bone formation rate was due mainly to a significant increase in mineral apposition rate, but there was also an increase in tibial mineralizing surface by GH by factorial analysis (P &lt; 0.05). There were significant treatment effects on osteoid surface and osteoclastic surface in femur in the combination treatment group vs. the controls. Osteocalcin gene expression analysis supported an enhanced expression in both groups treated with GH. These findings are consistent with a short term effect of GH to increase bone remodeling and predominantly osteoblastic activity in the appendicular skeleton. In contrast, other than an isolated increase in osteoclastic surface in femoral bone, IGF-I, when administered alone, was unable to significantly influence bone formation or resorption activity in this short term study.


1996 ◽  
Vol 135 (6) ◽  
pp. 672-677 ◽  
Author(s):  
Christian Skjæbæk ◽  
Jan Frystyk ◽  
Jens Møller ◽  
Jens Sandahl Christiansen ◽  
Hans Ørskov

Skjærbæk C, Frystyk J, Møller J, Christiansen JS, Ørskov H. Free and total insulin-like growth factors and insulin-like growth factor binding proteins during 14 days of growth hormone administration in healthy adults. Eur J Endocrinol 1996;135:672–7. ISSN 0804–4643 The objective was to investigate the effect of growth hormone (GH) administration on circulating levels of free insulin-like growth factors (IGFs) in healthy adults. Eight healthy male subjects were given placebo and two doses of GH (3 and 61U/m2 per day) for 14 days in a double-blind crossover study. Fasting blood samples were obtained every second day. Free IGF-I and IGF-II were determined by ultrafiltration of serum. Total IGF-I and IGF-II were measured after acid–ethanol extraction. In addition, GH, insulin, IGF binding protein 1 (IGFBP-1) and IGFBP-3 were measured. Serum-free and total IGF-I increased in a dose-dependent manner during the 14 days of GH administration. After 14 days, serum-free IGF-I values were 610 ± 100 ng/l (mean±sem) (placebo), 2760 ± 190 ng/l (3IU/m2) and 3720 ± 240 ng/l(6 IU/m2) (p = 0.0001 for 3 and 6 IU/m2 vs placebo; p = 0.004 for 3 IU/m2 vs 6 IU/m2). Total IGF-I values were 190 ± 10 μg/l (placebo), 525 ± 10 (3 IU/m2), and 655 ± 40 μg/l (6 IU/m2) (p < 0.0001 for 3 and 6IU/m2 vs placebo; p = 0.04 for 3 IU/m2 vs 6 IU/m2). There were no differences in the levels of free or total IGF-II during the three study periods. Insulin-like growth factor binding protein 1 was decreased during GH administration (p = 0.04 for placebo vs 3IU/m2; p = 0.006 for placebo vs 6 IU/m2). In conclusion, fasting serum free IGF-I increased dose dependently during GH administration and free IGF-I increased relatively more than total IGF-I. This may partly be due to the decrease in IGFBP-1. Christian Skjærbæk, Institute of Experimental Clinical Research, Medical Research Laboratories, Aarhus Kommune Hospital, Norrebrogade 44, DK-8000 Aarhus C, Denmark


2003 ◽  
Vol 88 (8) ◽  
pp. 3966-3972 ◽  
Author(s):  
Pat Mahachoklertwattana ◽  
Vorachai Sirikulchayanonta ◽  
Ampaiwan Chuansumrit ◽  
Patcharee Karnsombat ◽  
Lulin Choubtum ◽  
...  

Thalassemia/hemoglobinopathy is a hereditary disease that causes chronic anemia and increased erythropoiesis. Consequently, an expansion of bone marrow spaces may contribute to osteopenia/osteoporosis. However, the pathogenesis of bone changes is not yet known. We, therefore, carried out the study on bone histomorphometry and biochemical and hormonal profiles in children and adolescents with suboptimally treated β-thalassemia disease with the hope of gaining some new insight into the cellular and structural alterations of thalassemic bone. Seventeen patients underwent iliac crest bone biopsy for histomorphometric analyses. Bone mineral density (BMD) measurements were performed by dual energy x-ray absorptiometry. Most patients had growth retardation and delayed bone age. BMD was low especially at the lumbar spine. Serum IGF-I levels were almost always low. Bone histomorphometry revealed increased osteoid thickness, osteoid maturation time, and mineralization lag time, which indicate impaired bone matrix maturation and defective mineralization. In addition, iron deposits appeared along mineralization fronts and osteoid surfaces. Moreover, focal thickened osteoid seams were found together with focal iron deposits. Dynamic bone formation study revealed reduced bone formation rate. These findings indicate that delayed bone maturation and focal osteomalacia are the pathogenesis of bone disease in suboptimally blood-transfused thalassemics with iron overload. Iron deposits in bone and low circulating IGF-I levels may partly contribute to the above findings.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Nicholas J. Hanne ◽  
Andrew J. Steward ◽  
Marci R. Sessions ◽  
Hannah L. Thornburg ◽  
Huaxin Sheng ◽  
...  

Abstract Ischemic stroke induces rapid loss in bone mineral density that is up to 13 times greater than during normal aging, leading to a markedly increased risk of fracture. Little is known about skeletal changes following stroke beyond density loss. In this study, we use a mild-moderate middle cerebral artery occlusion model to determine the effects of ischemic stroke without bedrest on bone microstructure, dynamic bone formation, and tissue composition. Twenty-seven 12-week-old male C57Bl/6J mice received either a stroke or sham surgery and then either received daily treadmill exercise or remained sedentary for 4 weeks. All mice were ambulatory immediately following stroke, and limb coordination during treadmill exercise was unaffected by stroke, indicating similar mechanical loading across limbs for both stroke and sham groups. Stroke did not directly detriment microstructure, but exercise only stimulated adaptation in the sham group, not the stroke group, with increased bone volume fraction and trabecular thickness in the sham distal femoral metaphysis. Stroke differentially decreased cortical area in the distal femoral metaphysis for the affected limb relative to the unaffected limb, as well as endosteal bone formation rate in the affected tibial diaphysis. Although exercise failed to improve bone microstructure following stroke, exercise increased mineral-to-matrix content in stroke but not sham. Together, these results show that stroke inhibits exercise-induced changes to femoral microstructure but not tibial composition, even without changes to gait. Similarly, affected-unaffected limb differences in cortical bone structure and bone formation rate in ambulatory mice show that stroke affects bone health even without bedrest.


Sign in / Sign up

Export Citation Format

Share Document