Hormone pulsatility discrimination via coarse and short time sampling

1999 ◽  
Vol 277 (5) ◽  
pp. E948-E957 ◽  
Author(s):  
Steven M. Pincus ◽  
Mark L. Hartman ◽  
Ferdinand Roelfsema ◽  
Michael O. Thorner ◽  
Johannes D. Veldhuis

Pulsatile hormonal secretion is a ubiquitous finding in endocrinology. However, typical protocols employed to generate data sets suitable for “pulsatility analysis” have required 60–300 samples, rendering such studies largely research methodologies, due primarily to considerable assay expense. One successful mathematical strategy in calibrating changes in pulsatility modalities is approximate entropy (ApEn), a quantification of sequential irregularity. Given the degree of differences between ApEn values in pathophysiological subjects vs. healthy controls reported in several recent studies, we queried to what extent coarser (less frequent) and shorter duration time sampling would still retain significant ApEn differences between clinically distinct cohorts. Accordingly, we reanalyzed data from two studies of 24-h profiles of healthy vs. tumoral hormone secretion: 1) growth hormone comparisons of normal subjects vs. acromegalics, originally sampled every 5 min; and 2) ACTH and cortisol comparisons of normal subjects vs. Cushing's disease patients, originally sampled every 10 min. By multiple statistical analyses, we consistently and highly significantly ( P < 0.0001) established that serum concentration patterns in tumor patients are more irregular than those of controls, with high sensitivity and specificity, even at very coarse (e.g., 60 min) sampling regimens and over relatively short (2–4 h) time intervals. The consistency of these findings suggests a broadly based utility of such shorter and/or coarser sampling methodologies. Substantial reduction in sampling requirements holds the potential to move analysis of pulsatile hormone release from a primarily research tool to a clinically applicable protocol, in appropriate diagnostic and therapeutic contexts.

2007 ◽  
Vol 293 (5) ◽  
pp. E1409-E1415 ◽  
Author(s):  
Peter Y. Liu ◽  
Ali Iranmanesh ◽  
Daniel M. Keenan ◽  
Steven M. Pincus ◽  
Johannes D. Veldhuis

The secretion of anterior-pituitary hormones is subject to negative feedback. Whether negative feedback evolves dynamically over 24 h is not known. Conventional experimental paradigms to test this concept may induce artifacts due to nonphysiological feedback. These limitations might be overcome by a noninvasive methodology to quantify negative feedback continuously over 24 h without disrupting the axis. The present study exploits a recently validated model-free regularity statistic, approximate entropy (ApEn), which monitors feedback changes with high sensitivity and specificity (both >90%; Pincus SM, Hartman ML, Roelfsema F, Thorner MO, Veldhuis JD. Am J Physiol Endocrinol Metab 273: E948–E957, 1999). A time-incremented moving window of ApEn was applied to LH time series obtained by intensive (10-min) blood sampling for four consecutive days (577 successive measurements) in each of eight healthy men. Analyses unveiled marked 24-h variations in ApEn with daily maxima (lowest feedback) at 1100 ± 1.7 h (mean ± SE) and minima (highest feedback) at 0430 ± 1.9 h. The mean difference between maximal and minimal 24-h LH ApEn was 0.348 ± 0.018, which differed by P < 0.001 from all three of randomly shuffled versions of the same LH time series, simulated pulsatile data and assay noise. Analyses artificially limited to 24-h rather than 96-h data yielded reproducibility coefficients of 3.7–9.0% for ApEn maxima and minima. In conclusion, a feedback-sensitive regularity statistic unmasks strong and consistent 24-h rhythmicity of the orderliness of unperturbed pituitary-hormone secretion. These outcomes suggest that ApEn may have general utility in probing dynamic mechanisms mediating feedback in other endocrine systems.


1962 ◽  
Vol 02 (02) ◽  
pp. 165-172
Author(s):  
C Miras ◽  
G Lewis ◽  
J Mantzos

Summary1. Separated leukocytes or total blood from normal subjects, untreated leukaemic patients and from leukaemic patients treated with cytostatic agents were incubated with CH3COONa-l-C14. Radioactivity of mixed lipids was measured at standard time intervals.2. The time incorporation curve observed with leukocytes from treated leukaemic patients showed after an initial linear part, a more rapid levelling off than the curves observed with leukocytes from untreated and normal subjects.3. Therefore, an indirect effect of treatment on leukocyte lipid synthesis seems to be present.4. Phospholipid and neutral lipid synthesis by leukaemic leukocytes was also studied. The results give no evidence that these fractions as a whole have any precursor-product relation.


2016 ◽  
Vol 136 (12) ◽  
pp. 891-897 ◽  
Author(s):  
Katsuhiro Matsuda ◽  
Kazuhiro Misawa ◽  
Hirotaka Takahashi ◽  
Kenta Furukawa ◽  
Satoshi Uemura

Author(s):  
Elena Yu. Balashova ◽  
◽  
Lika I. Mikeladze ◽  
Elena K. Kozlova ◽  
◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1213
Author(s):  
Ahmed Aljanad ◽  
Nadia M. L. Tan ◽  
Vassilios G. Agelidis ◽  
Hussain Shareef

Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling of solar photovoltaic farms. However, operating and controlling such farms exposed to varying environmental conditions, such as fast passing clouds, necessitates GSR data to be available for very short time intervals. Classical backpropagation neural networks do not perform satisfactorily when predicting parameters within short intervals. This paper proposes a hybrid backpropagation neural networks based on particle swarm optimization. The particle swarm algorithm is used as an optimization algorithm within the backpropagation neural networks to optimize the number of hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable model in predicting changes in the solar irradiance during short time interval in tropical regions such as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error indices have been introduced to evaluate the performance of the proposed algorithm. From the results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). The results revealed that proposed model outperformed the standalone backpropagation neural networks method in predicting global solar irradiance values for extremely short-time intervals. In addition to that, the proposed model exhibited high level of predictability compared to other existing models.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 63 ◽  
Author(s):  
Thomas Meunier ◽  
Claire Ménesguen ◽  
Xavier Carton ◽  
Sylvie Le Gentil ◽  
Richard Schopp

The stability properties of a vortex lens are studied in the quasi geostrophic (QG) framework using the generalized stability theory. Optimal perturbations are obtained using a tangent linear QG model and its adjoint. Their fine-scale spatial structures are studied in details. Growth rates of optimal perturbations are shown to be extremely sensitive to the time interval of optimization: The most unstable perturbations are found for time intervals of about 3 days, while the growth rates continuously decrease towards the most unstable normal mode, which is reached after about 170 days. The horizontal structure of the optimal perturbations consists of an intense counter-shear spiralling. It is also extremely sensitive to time interval: for short time intervals, the optimal perturbations are made of a broad spectrum of high azimuthal wave numbers. As the time interval increases, only low azimuthal wave numbers are found. The vertical structures of optimal perturbations exhibit strong layering associated with high vertical wave numbers whatever the time interval. However, the latter parameter plays an important role in the width of the vertical spectrum of the perturbation: short time interval perturbations have a narrow vertical spectrum while long time interval perturbations show a broad range of vertical scales. Optimal perturbations were set as initial perturbations of the vortex lens in a fully non linear QG model. It appears that for short time intervals, the perturbations decay after an initial transient growth, while for longer time intervals, the optimal perturbation keeps on growing, quickly leading to a non-linear regime or exciting lower azimuthal modes, consistent with normal mode instability. Very long time intervals simply behave like the most unstable normal mode. The possible impact of optimal perturbations on layering is also discussed.


1998 ◽  
Vol 27 (3) ◽  
pp. 351-369 ◽  
Author(s):  
MICHAEL NOBLE ◽  
SIN YI CHEUNG ◽  
GEORGE SMITH

This article briefly reviews American and British literature on welfare dynamics and examines the concepts of welfare dependency and ‘dependency culture’ with particular reference to lone parents. Using UK benefit data sets, the welfare dynamics of lone mothers are examined to explore the extent to which they inform the debates. Evidence from Housing Benefits data show that even over a relatively short time period, there is significant turnover in the benefits-dependent lone parent population with movement in and out of income support as well as movement into other family structures. Younger lone parents and owner-occupiers tend to leave the data set while older lone parents and council tenants are most likely to stay. Some owner-occupier lone parents may be relatively well off and on income support for a relatively short time between separation and a financial settlement being reached. They may also represent a more highly educated and highly skilled group with easier access to the labour market than renters. Any policy moves paralleling those in the United States to time limit benefit will disproportionately affect older lone parents.


2014 ◽  
Vol 889-890 ◽  
pp. 745-748
Author(s):  
Jian Sheng Cao ◽  
Wan Jun Zhang ◽  
Xin Hua Zeng

Automatic monitoring of hydrologic properties such as water velocity at short-time intervals is critical for understanding watershed eco-hydrological processes. This can also be used to study the laws of stream flows and interactions ecological process. The advent of modern electronic technology (and the near-perfection of especially sensor and data collection technologies), has made it possible to use automatic monitoring systems to continuously measure hydrologic properties at short-time intervals. This paper introduces one such paperless flow velocity measuring/recoding system. The system uses a photoelectric sensor that is mainly comprised of photoelectric velocity sensor and pulse recorder. The system uses propellers (with reflective panels and photoemission cells) to transform flow velocities into optical pulse signals. It also uses photosensitive tubes to transform optical pulse signals into electric pulse signals. The electric pulse counts (generated in unit time) are recorded via pulse recorders. This therefore accomplishes automatic monitoring and continuous recording of fluid flow velocity.


2011 ◽  
Vol 32 (1) ◽  
pp. 70-80 ◽  
Author(s):  
Federico E Turkheimer ◽  
Sudhakar Selvaraj ◽  
Rainer Hinz ◽  
Venkatesha Murthy ◽  
Zubin Bhagwagar ◽  
...  

This paper aims to build novel methodology for the use of a reference region with specific binding for the quantification of brain studies with radioligands and positron emission tomography (PET). In particular: (1) we introduce a definition of binding potential BPD = DVR–1 where DVR is the volume of distribution relative to a reference tissue that contains ligand in specifically bound form, (2) we validate a numerical methodology, rank-shaping regularization of exponential spectral analysis (RS-ESA), for the calculation of BPD that can cope with a reference region with specific bound ligand, (3) we demonstrate the use of RS-ESA for the accurate estimation of drug occupancies with the use of correction factors to account for the specific binding in the reference. [11C]-DASB with cerebellum as a reference was chosen as an example to validate the methodology. Two data sets were used; four normal subjects scanned after infusion of citalopram or placebo and further six test—retest data sets. In the drug occupancy study, the use of RS-ESA with cerebellar input plus corrections produced estimates of occupancy very close the ones obtained with plasma input. Test-retest results demonstrated a tight linear relationship between BPD calculated either with plasma or with a reference input and high reproducibility.


Sign in / Sign up

Export Citation Format

Share Document