P2X2 receptors are essential for [Ca2+]i increases in response to ATP in cultured rat myenteric neurons

2005 ◽  
Vol 289 (5) ◽  
pp. G935-G948 ◽  
Author(s):  
Toshio Ohta ◽  
Akane Kubota ◽  
Matsuka Murakami ◽  
Ken-ichi Otsuguro ◽  
Shigeo Ito

We characterized ATP-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and membrane current in cultured rat myenteric neurons using ratiometric Ca2+ imaging with fura-2 and the whole cell patch-clamp technique, respectively. Neuronal cells were functionally identified by [Ca2+]i responses to high K+ and nicotine, which occurred only in cells positive for neuron-specific protein gene product 9.5 immunoreactivity. ATP evoked a dose-dependent increase of [Ca2+]i that was greatly decreased by the removal of extracellular Ca2+ concentration ([Ca2+]o). The amplitude of the [Ca2+]i response to ATP was reduced by half in the presence of voltage-dependent Ca2+ channel blockers. In [Ca2+]o-free solution, ATP produced a small transient rise in [Ca2+]i similar to that induced by P2Y agonists. At −60 mV, ATP evoked a slowly inactivating inward current that was suppressed by the removal of extracellular Na+ concentration. The current-voltage relation for ATP showed an inward rectification with the reversal potential of about 0 mV. The apparent rank order of potency for the purinoceptor agonist-induced increases of [Ca2+]i was ATP ≥ adenosine 5′- O-3-triphosphate ≥ CTP ≥ 2-methylthio-ATP > benzoylbenzoyl-ATP. A similar potency order was obtained with current responses to these agonists. P2 antagonists inhibited inward currents induced by ATP. Ca2+ and Mg2+ suppressed the ATP-induced current, and Zn2+, Cu2+, and protons potentiated it. RT-PCR and immunocytochemical studies showed the expression of P2X2 receptors in cultured rat myenteric neurons. These results suggest that ATP mainly activates ionotropic P2X2 receptors, resulting in a [Ca2+]i increase dependent on [Ca2+]o in rat myenteric neurons. A small part of the ATP-induced [Ca2+]i increase may be also mediated via a P2Y receptor-related mechanism.

2007 ◽  
Vol 293 (4) ◽  
pp. G886-G893 ◽  
Author(s):  
Mabruka Sitmo ◽  
Matthias Rehn ◽  
Martin Diener

The aim of the present study was to characterize the action of the neurotransmitter NO on rat myenteric neurons. A NO donor such as GEA 3162 (10−4 mol/l) induced an increase in the intracellular Ca2+ concentration as indicated by an increase in the fura 2 ratio in ganglia loaded with this Ca2+-sensitive fluorescent dye. The effect of GEA 3162 was strongly reduced in the absence of extracellular Ca2+, suggesting an influx of Ca2+ from the extracellular space evoked by NO. A similar nearly complete inhibition was observed in the presence of Ca2+ channel blockers such as Ni2+ (5 × 10−4 mol/l) or nifedipine (10−6 mol/l). Whole cell patch-clamp recordings confirmed the activation of voltage-dependent Ca2+ channels, measured as inward current carried by Ba2+, by the NO donor. The peak Ba2+-carried inward current increased from −100 ± 19 to −185 ± 34 pA in the presence of sodium nitroprusside (10−4 mol/l). The consequence was a hyperpolarization of the membrane, which was blocked by intracellular Cs+ and thus most probably reflects the activation of Ca2+-dependent K+ channels. Furthermore, at least two subtypes of NO synthases, NOS-1 (neuronal form) and NOS-3 (endothelial form), were found as transcripts in mRNA isolated from the rat myenteric ganglia. The expression of these NO synthases was confirmed immunohistochemically. These observations suggest that NO, released from nitrergic neurons within the enteric nervous system, not only affects target organs such as smooth muscle cells in the gut but has in addition profound effects on the enteric neurons themselves, the key players in the regulation of many gastrointestinal functions.


2001 ◽  
Vol 281 (2) ◽  
pp. G333-G341 ◽  
Author(s):  
Seiichiro Kimura ◽  
Hiroshi Mieno ◽  
Kenji Tamaki ◽  
Masaki Inoue ◽  
Kazuaki Chayama

In pepsinogen-secreting cells of bullfrog ( Rana catesbeiana), recent evidence suggests that Ca2+ release from internal stores followed by Ca2+ influx across the plasma membrane elicits pepsinogen secretion. Such a Ca2+ influx could be carried by a background current, potentiated by bombesin, that was found in these cells using the whole cell patch-clamp technique. The permeability ratio of Cs+-Rb+-K+-Na+-Li+- N-methyl-d-glucamine+-Ca2+was 1.01:1:1:0.86:0.72:0.54:0.34. The current was almost totally blocked by the nonselective cation channel blockers La3+(0.1 mM) and Gd3+ (0.1 mM) and was activated by intracellular Ca2+. These properties demonstrated that the current, which was activated by bombesin, was a nonselective cation current. At the same time, Gd3+ suppressed pepsinogen secretion by 29 ± 5.6% in isolated pepsinogen-secreting glands. These results are in accord with the idea that a nonselective cation channel in pepsinogen-secreting cells plays a role as a Ca2+ influx pathway leading to secretion of pepsinogen in bullfrog esophageal mucosa.


1995 ◽  
Vol 268 (2) ◽  
pp. C389-C401 ◽  
Author(s):  
S. Chepilko ◽  
H. Zhou ◽  
H. Sackin ◽  
L. G. Palmer

The renal K+ channel (ROMK2) was expressed in Xenopus oocytes, and the patch-clamp technique was used to assess its conducting and gating properties. In cell-attached patches with 110 mM K+ in the bath and pipette, the reversal potential was near zero and the inward conductance (36 pS) was larger than the outward conductance (17 pS). In excised inside-out patches the channels showed rectification in the presence of 5 mM Mg2+ on the cytoplasmic side but not in Mg(2+)-free solution. Inward currents were also observed when K+ was replaced in the pipette by Rb+, NH4+, or thallium (Tl+). The reversal potentials under these conditions yielded a selectivity sequence of Tl+ > K+ > Rb+ > NH4+. On the other hand, the slope conductances for inward current gave a selectivity sequence of K+ = NH4+ > Tl+ > Rb+. The differences in the two sequences can be explained by the presence of cation binding sites within the channel, which interact with Rb+ and Tl+ more strongly and with NH4+ less strongly than with K+. Two other ions, Ba2+ and Cs+, blocked the channel from the outside. The effect of Ba2+ (1 mM) was to reduce the open probability of the channels, whereas Cs+ (10 mM) reduced the apparent single-channel current. The effects of both blockers are enhanced by membrane hyperpolarization. The kinetics of the channel were also studied in cell-attached patches. With K+ in the pipette the distribution of open times could be described by a single exponential (tau 0 = 25 ms), whereas two exponentials (tau 1 = 1 ms, tau 2 = 30 ms) were required to describe the closed-time distribution. Hyperpolarization of the oocyte membrane decreased the open probability and tau 0, and increased tau 1, tau 2, and the number of long closures. The presence of Tl+ in the pipette significantly altered the kinetics, reducing tau 0 and eliminating the long-lived closures. These results suggest that the gating of the channel may depend on the nature of the ion in the pore.


1999 ◽  
Vol 19 (12) ◽  
pp. 1309-1315 ◽  
Author(s):  
Michèle Bastide ◽  
Régis Bordet ◽  
Qian Pu ◽  
Emmanuel Robin ◽  
François Puisieux ◽  
...  

Functional alterations of barium-sensitive potassium inward rectifier (Kir) current, which is involved in the vasodilation of middle cerebral arteries (MCA) in rat brain, have been described during brain ischemiaireperfusion (I/R). The authors investigate the effects of I/R on Kir current recorded in isolated myocytes from MCA of control rats and from contralateral and ipsilateral MCA of ischemic rats by the whole-cell patch-clamp technique, and the relationship between its alteration and The severity of brain injury. The vascular smooth muscle cells exhibited similar morphologic features in all conditions, and the Kir was present in the three groups of myocytes, exhibiting a characteristic inward rectification and a normal external potassium dependence. The Kir density was significantly reduced in cell of MCA ipsilateral to occlusion with a maximum at −135 mV, whereas there was no difference between control and contralateral cells. This alteration in Kir density in occluded MCA was significantly correlated with severity of brain injury and brain edema. These results suggest that the alteration of Kir density in MCA myocytes after I/R and the consecutive impaired dilation of MCA may contribute to aggravation of the brain injury.


1994 ◽  
Vol 191 (1) ◽  
pp. 167-193
Author(s):  
C Jackel ◽  
W Krenz ◽  
F Nagy

Neurones were dissociated from thoracic ganglia of embryonic and adult lobsters and kept in primary culture. When gamma-aminobutyric acid (GABA) was applied by pressure ejection, depolarizing or hyperpolarizing responses were produced, depending on the membrane potential. They were accompanied by an increase in membrane conductance. When they were present, action potential firing was inhibited. The pharmacological profile and ionic mechanism of GABA-evoked current were investigated under voltage-clamp with the whole-cell patch-clamp technique. The reversal potential of GABA-evoked current depended on the intracellular and extracellular Cl- concentration but not on extracellular Na+ and K+. Blockade of Ca2+ channels by Mn2+ was also without effect. The GABA-evoked current was mimicked by application of the GABAA agonists muscimol and isoguvacine with an order of potency muscimol>GABA>isoguvacine. cis-4-aminocrotonic acid (CACA), a folded and conformationally restricted GABA analogue, supposed to be diagnostic for the vertebrate GABAC receptor, also induced a bicuculline-resistant chloride current, although with a potency about 10 times lower than that of GABA. The GABA-evoked current was largely blocked by picrotoxin, but was insensitive to the GABAA antagonists bicuculline, bicuculline methiodide and SR 95531 at concentrations of up to 100 µmol l-1. Diazepam and phenobarbital did not exert modulatory effects. The GABAB antagonist phaclophen did not affect the GABA-induced current, while the GABAB agonists baclophen and 3-aminopropylphosphonic acid (3-APA) never evoked any response. Our results suggest that lobster thoracic neurones in culture express a chloride-conducting GABA-receptor channel which conforms to neither the GABAA nor the GABAB types of vertebrates but shows a pharmacology close to that of the novel GABAC receptor described in the vertebrate retina.


1997 ◽  
Vol 77 (1) ◽  
pp. 186-199 ◽  
Author(s):  
Dieter Wicher ◽  
Heinz Penzlin

Wicher, Dieter, and Heinz Penzlin. Ca2+ currents in central insect neurons: electrophysiological and pharmacological properties. J. Neurophysiol. 77: 186–199, 1997. Ca2+ currents in dorsal unpaired median (DUM) neurons isolated from the fifth abdominal ganglion of the cockroach Periplaneta americana were investigated with the whole cell patch-clamp technique. On the basis of kinetic and pharmacological properties, two different Ca2+ currents were separated in these cells: mid/low-voltage-activated (M-LVA) currents and high-voltage-activated (HVA) currents. M-LVA currents had an activation threshold of −50 mV and reached maximal peak values at −10 mV. They were sensitive to depolarized holding potentials and decayed very rapidly. The decay was largely Ca2+ dependent. M-LVA currents were effectively blocked by Cd2+ median inhibiting concentration (IC50 = 9 μM), but they also had a remarkable sensitivity to Ni2+ (IC50 = 19 μM). M-LVA currents were insensitive to vertebrate LVA channel blockers like flunarizine and amiloride. The currents were, however, potently blocked by ω-conotoxin MVIIC (1 μM) and ω-agatoxin IVA (50 nM). The blocking effects of ω-toxins developed fast (time constant τ = 15 s) and were fully reversible after wash. HVA currents activated positive to −30 mV and showed maximal peak currents at +10 mV. They were resistant to depolarized holding potentials up to −50 mV and decayed in a less pronounced manner than M-LVA currents. HVA currents were potently blocked by Cd2+ (IC50 = 5 μM) but less affected by Ni2+ (IC50 = 40 μM). These currents were reduced by phenylalkylamines like verapamil (10 μM) and benzothiazepines like diltiazem (10 μM), but they were insensitive to dihydropyridines like nifedipine (10 μM) and BAY K 8644 (10 μM). Furthermore, HVA currents were sensitive to ω-conotoxin GVIA (1 μM). The toxin-induced reduction of currents appeared slowly (τ ∼ 120 s) and the recovery after wash was incomplete in most cases. The dihydropyridine insensitivity of the phenylalkylamine-sensitive HVA currents is a property the cockroach DUM cells share with other invertebrate neurons. Compared with Ca2+ currents in vertebrates, the DUM neuron currents differ considerably from the presently known types. Although there are some similarities concerning kinetics, the pharmacological profile of the cockroach Ca2+ currents especially is very different from profiles already described for vertebrate currents.


2000 ◽  
Vol 279 (3) ◽  
pp. C603-C610 ◽  
Author(s):  
Sayaka Mitarai ◽  
Muneshige Kaibara ◽  
Katsusuke Yano ◽  
Kohtaro Taniyama

We investigated the inactivation process of macroscopic cardiac L-type Ca2+ channel currents using the whole cell patch-clamp technique with Na+ as the current carrier. The inactivation process of the inward currents carried by Na+ through the channel consisted of two components >0 mV. The time constant of the faster inactivating component (30.6 ± 2.2 ms at 0 mV) decreased with depolarization, but the time constant of the slower inactivating component (489 ± 21 ms at 0 mV) was not significantly influenced by the membrane potential. The inactivation process in the presence of isoproterenol (100 nM) consisted of a single component (538 ± 60 ms at 0 mV). A protein kinase inhibitor, H-89, decreased the currents and attenuated the effects of isoproterenol. In the presence of cAMP (500 μM), the inactivation process consisted of a single slow component. We propose that the faster inactivating component represents a kinetic of the dephosphorylated or partially phosphorylated channel, and phosphorylation converts the kinetics into one with a different voltage dependency.


2002 ◽  
Vol 282 (6) ◽  
pp. F1064-F1074 ◽  
Author(s):  
Thomas L. Pallone ◽  
James M.-C. Huang

Using nystatin perforated-patch whole cell recording, we investigated the role of Cl−conductance in the modulation of outer medullary descending vasa recta (OMDVR) pericyte membrane potential (Ψm) by ANG II. ANG II (10−11 to 10−7 M) consistently depolarized OMDVR and induced Ψm oscillations at lower concentrations. The Cl− channel blockers anthracene-9-decarboxylate (1 mM) and niflumic acid (10 μM) hyperpolarized resting pericytes and repolarized ANG II-treated pericytes. In voltage-clamp experiments, ANG II-treated pericytes exhibited slowly activating currents that were nearly eliminated by treatment with niflumic acid (10 μM) or removal of extracellular Ca2+. Those currents reversed at −31 and −10 mV when extracellular Cl− concentration was 152 and 34 mM, respectively. In pericytes held at −70 mV, oscillating inward currents were sometimes observed; the reversal potential also shifted with extracellular Cl− concentration. We conclude that ANG II activates a Ca2+-dependent Cl− conductance in OMDVR pericytes to induce membrane depolarization and Ψm oscillations.


2003 ◽  
Vol 284 (4) ◽  
pp. C839-C847 ◽  
Author(s):  
Sok Han Kang ◽  
Pieter Vanden Berghe ◽  
Terence K. Smith

Whole cell patch-clamp recordings were made from cultured myenteric neurons taken from murine proximal colon. The micropipette contained Cs+ to remove K+ currents. Depolarization elicited a slowly activating time-dependent outward current ( I tdo), whereas repolarization was followed by a slowly deactivating tail current ( I tail). I tdo and I tail were present in ∼70% of neurons. We identified these currents as Cl− currents ( I Cl), because changing the transmembrane Cl− gradient altered the measured reversal potential ( E rev) of both I tdo and I tail with that for I tailshifted close to the calculated Cl− equilibrium potential ( E Cl). I Cl are Ca2+-activated Cl− current [ I Cl(Ca)] because they were Ca2+dependent. E Cl, which was measured from the E rev of I Cl(Ca) using a gramicidin perforated patch, was −33 mV. This value is more positive than the resting membrane potential (−56.3 ± 2.7 mV), suggesting myenteric neurons accumulate intracellular Cl−. ω-Conotoxin GIVA [0.3 μM; N-type Ca2+ channel blocker] and niflumic acid [10 μM; known I Cl(Ca) blocker], decreased the I Cl(Ca). In conclusion, these neurons have I Cl(Ca) that are activated by Ca2+entry through N-type Ca2+ channels. These currents likely regulate postspike frequency adaptation.


2003 ◽  
Vol 285 (6) ◽  
pp. L1203-L1212 ◽  
Author(s):  
Xiao Wen Fu ◽  
Colin A. Nurse ◽  
Suzanne M. Farragher ◽  
Ernest Cutz

Pulmonary neuroepithelial bodies (NEB) are presumed airway chemoreceptors involved in respiratory control, especially in the neonate. Nicotine is known to affect both lung development and control of breathing. We report expression of functional nicotinic acetylcholine receptors (nAChR) in NEB cells of neonatal hamster lung using a combination of morphological and electrophysiological techniques. Nonisotopic in situ hybridization method was used to localize mRNA for the β2-subunit of nAChR in NEB cells. Double-label immunofluorescence confirmed expression of α4-, α7-, and β2-subunits of nAChR in NEB cells. The electrophysiological characteristics of nAChR in NEB cells were studied using the whole cell patch-clamp technique on fresh lung slices. Application of nicotine (∼0.1-100 μM) evoked inward currents that were concentration dependent (EC50 = 3.8 μM; Hill coefficient = 1.1). ACh (100 μM) and nicotine (50 μM) produced two types of currents. In most NEB cells, nicotine-induced currents had a single desensitizing component that was blocked by mecamylamine (50 μM) and dihydro-β-erythroidine (50 μM). In some NEB cells, nicotine-induced current had two components, with fast- and slow-desensitizing kinetics. The fast component was selectively blocked by methyllcaconitine (MLA, 10 nM), whereas both components were inhibited by mecamylamine. Choline (0.5 mM) also induced an inward current that was abolished by 10 nM MLA. These studies suggest that NEB cells in neonatal hamster lung express functional heteromeric α3β2, α4β2, and α7 nAChR and that cholinergic mechanisms could modulate NEB chemoreceptor function under normal and pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document