A novel ultrasound technique to study the biomechanics of the human esophagus in vivo

2002 ◽  
Vol 282 (5) ◽  
pp. G785-G793 ◽  
Author(s):  
Torahiko Takeda ◽  
Ghassan Kassab ◽  
Jianmin Liu ◽  
James L. Puckett ◽  
Rishi R. Mittal ◽  
...  

The objectives of this study were to validate a novel ultrasound technique and to use it to study the circumferential stress-strain properties of the human esophagus in vivo. A manometric catheter equipped with a high-compliance bag and a high-frequency intraluminal ultrasonography probe was used to record esophageal pressure and images. Validation studies were performed in vitro followed by in vivo studies in healthy human subjects. Esophageal distensions were performed with either an isovolumic (5–20 ml of water) or with an isobaric (10–60 mmHg) technique. Sustained distension was also performed for 3 min in each subject. The circumferential wall stress and strain were calculated. In vitro studies indicate that the ultrasound technique can make measurements of the esophageal wall with an accuracy of 0.01 mm. The in vivo studies provide the necessary data to compute the Kirchhoff's stress, Green's strain, and Young's elastic modulus during esophageal distensions. The stress-strain relationship revealed a linear shape, the slope of which corresponds to the Young's modulus. During sustained distensions, we found dynamic changes of stress and strain during the period of distension. We describe and validate a novel ultrasound technique that allows measurement of biomechanical properties of the esophagus in vivo in humans.

Author(s):  
Bhikshapathi D. V. R. N. ◽  
Chenna Madipalli Shalina ◽  
Vishnu Pulavarthy ◽  
Viswaja Medipally

The aim of this study was to explore the application of Gelucire 43/01 for the design of sustained release gastro retentive drug delivery system of Amlodipine besylate. Gelucire 43/01 has been used in floating sustained release formulations to prolong gastric residence time and increase its bioavailability. Gelucire 43/01 in combination with HPMC and Polyox was used as a release retarding polymer. HPMC of various viscosity grades HPMC K4M, HPMC K15M and HPMC K100M in combination of Gelucire were tested to obtain optimal total floating time as well as controlled drug release for prolonged period. Melt granulation technique has been used to prepare gastro retentive Amlodipine besylate formulations. All the formulations were evaluated in vitro for their floating ability and drug release. The floating times of all tablet formulations were greater than 12h. HPMC K4M in combination with Gelucire as polymeric matrix enhanced the drug release due to addition of hydrophilic polymer facilitated the swelling and erosion of the tablets. Incorporation of low viscosity polymer HPMC K100 M resulted in optimal floating as well as drug release for longer time. In vivo studies of optimized formulation show floating ability for 6 h in stomach. The results indicate that Gelucire 43/01 in combination with dissolution enhancers HPMC increase the permeability of the wax matrix, which provides improved dissolution thereby bioavailability of Amlodipine besylate and can be considered as a carrier for the development of sustained release floating drug delivery systems.  


2010 ◽  
Vol 30 (6) ◽  
pp. 507-514 ◽  
Author(s):  
N. Pant ◽  
AB Pant ◽  
M. Shukla ◽  
N. Mathur ◽  
YK Gupta ◽  
...  

Rapid industrialization and urbanization release several chemicals such as phthalates into the environment and cause adverse effects on reproductive system, mainly endocrine disruption, testicular injury and decline in semen quality in humans. There are no reports in extrapolating of the epidemiological data with in vitro findings. Our study show the correlations between in vivo studies and in vitro data for the effect of phthalate esters. Healthy human males, in the age group 21 to 40 years, visiting Chhatrapati Sahuji Maharaj Medical University (CSMMU), Lucknow, as part of infertility investigation, were recruited as volunteers. Semen analysis was performed according to the WHO guidelines. Phthalate esters were analyzed by high-performance liquid chromatography (HPLC) and cell viability by MTT assay. In the in vitro studies, sperms were exposed to highest concentration in semen samples (5—10 times higher) for a period ranging between 30 min and 96 hours. An inverse relationship with sperm motility in epidemiological studies was concurrent by significant dose-and time-dependent decrease in the sperm motility under in vitro environment after 12-hour exposure. Cytotoxicity was observed only with the highest concentration after 96 hours of exposure. There are a significant correlation between phthalate ester diethylhexyl phthalate, di-n-butyl phthalate (DEHP and DBP) and sperm motility both in vitro and in vivo conditions. Additionally, in vitro experiments conducted not only adjunct to the existing in vivo data but also specify the effect of specific toxicants (DEHP and DBP) on sperm motility and viability. Results show the decrease in motility of sperms under in vitro conditions at the maximum range of in vivo measured levels and 5- or 10-folds higher to that found in human semen samples.


2007 ◽  
Vol 293 (6) ◽  
pp. H3290-H3300 ◽  
Author(s):  
Yi Liu ◽  
Charles Dang ◽  
Marisa Garcia ◽  
Hans Gregersen ◽  
Ghassan S. Kassab

The stress and strain in the vessel wall are important determinants of vascular physiology and pathophysiology. Vessels are constrained radially by the surrounding tissue. The hypothesis in this work is that the surrounding tissue takes up a considerable portion of the intravascular pressure and significantly reduces the wall strain and stress. Ten swine of either sex were used to test this hypothesis. An impedance catheter was inserted into the carotid or femoral artery, and after mechanical preconditioning pressure-cross-sectional area relations were obtained with the surrounding tissue intact and dissected away (untethered), respectively. The radial constraint of the surrounding tissue was quantified as an effective perivascular pressure on the outer surface of the vessel, which was estimated as 50% or more of the intravascular pressure. For carotid arteries at pressure of 100 mmHg, the circumferential wall stretch ratio in the intact state was ∼20% lower than in the untethered state and the average circumferential stress was reduced by ∼70%. For femoral arteries, the reductions were ∼15% and 70%, respectively. These experimental data support the proposed hypothesis and suggest that in vitro and in vivo measurements of the mechanical properties of vessels must be interpreted with consideration of the constraint of the surrounding tissue.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2881-2881
Author(s):  
Jane L. Liesveld ◽  
Jeffrey E. Lancet ◽  
Karen E. Rosell ◽  
Jeremy Bechelli ◽  
Camille N. Abboud ◽  
...  

Abstract Stromal cell derived factor-1 (SDF-1α) and its receptor, CXCR4 play a role in the trafficking of CD34+ cells. AMD3100, a selective CXCR4 antagonist, can mobilize hematopoietic progenitors from marrow to peripheral blood in healthy human volunteers and in patients with multiple myeloma and non-Hodgkin’s lymphoma (Flomenberg et al, Blood 102, 39a, 2003). Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation and NOD/SCID repopulating capacity (Kahn et al. Blood 103:2942, 2004). Since CXCR4 has been found to regulate the migration and development of AML stem cells in NOD/SCID mice, we studied the effect of AMD3100 on AML cells from the standpoint of proliferation and in vitro transendothelial transmigration utilizing a transwell system. AMD3100 (from AnorMED, Inc.), at concentrations from 0.1 to 1.0 ng/ml did not affect the viability or porliferation of purified AML blasts (n=4). AMD3100 did not influence the adherence of AML blasts to endothelial monolayers. In the presence of 0.1 to 1 ng/ml AMD-3100, the transmigration of normal CD34+ cells stimulated by 100 ng/ml SDF-1α through a human umbilical vein endothelial cell (HUVEC) monolayer was completely inhibited. Likewise, the transmigration of AML blasts through HUVECs was not altered by AMD3100 exposure, but the SDF-1α mediated transmigration was inhibited by AMD3100 from 0.1 to 1 ng/ml. The same effect was noted with AML transmigration through marrow stromal layers. The increase in transmigration through endothelial cells stimulated with G-CSF was not inhibited by AMD3100 whereas the transmigration stimulated by interleukin-8 was inhibited. When AMD3100 was placed in the bottom of the migration chamber, no independent effects on AML transmigration were noted. Co-culture of AML blasts with stromal monolayers protected blasts from apoptosis. This protection was not altered by SDF-1α, AMD3100, nor by the combination. These in vitro results demonstrate that AMD3100 can influence the migratory capacity of AML cells but has no direct effects on their proliferation or survival. Further in vitro and in vivo studies will be required to elucidate the role that this unique chemokine antagonist has in the mobilization potential of AML blasts or progenitors or in the interactions of AML cells with their microenvironment. Such studies have implications for AML autografting and AML blast interactions with extramedullary endothelial cells.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S198-S198
Author(s):  
Joseph R Meno ◽  
Thien-son K Nguyen ◽  
Elise M Jensen ◽  
G Alexander West ◽  
Leonid Groysman ◽  
...  

1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mario Fadin ◽  
Maria C. Nicoletti ◽  
Marzia Pellizzato ◽  
Manuela Accardi ◽  
Maria G. Baietti ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document