Enteric GABA: mode of action and role in the regulation of the peristaltic reflex

1992 ◽  
Vol 262 (4) ◽  
pp. G690-G694 ◽  
Author(s):  
J. R. Grider ◽  
G. M. Makhlouf

The mode of action of gamma-aminobutyric acid (GABA) and the role of myenteric GABA neurons in the regulation of peristalsis were examined in various preparations of rat colonic muscle. GABA had no contractile, relaxant, or modulatory effect on smooth muscle cells isolated from the circular muscle layer. In innervated circular muscle strips, GABA elicited concentration-dependent relaxation accompanied by release of vasoactive intestinal peptide (VIP). Relaxation and VIP release were inhibited by tetrodotoxin and by the GABAA receptor antagonist bicuculline but not by the GABAB receptor antagonist phaclofen. Relaxation was inhibited by the VIP receptor antagonist VIP-(10-28) implying that VIP release was coupled to muscle relaxation. Relaxation was augmented by atropine implying that GABA also activated cholinergic neurons causing release of acetylcholine that attenuated the relaxant response. This pharmacological profile was evident when GABA was released from intrinsic GABA neurons during peristalsis induced by radial stretch. Blockade of GABAA receptors with bicuculline inhibited the descending relaxation mediated by VIP motor neurons and the ascending contraction mediated by cholinergic motor neurons. Stimulation of these receptors with exogenous GABA had the opposite effect. We conclude that on release from myenteric neurons, GABA acts via GABAA receptors on cholinergic and VIP motor neurons responsible for the two components of the peristaltic reflex.

1993 ◽  
Vol 265 (2) ◽  
pp. R348-R355 ◽  
Author(s):  
V. L. Trudeau ◽  
B. D. Sloley ◽  
R. E. Peter

The involvement of gamma-aminobutyric acid (GABA) in regulation of pituitary gonadotropin-II (GTH-II) release was studied in the goldfish. Intraperitoneal injection of GABA (300 micrograms/g) stimulated an increase in serum GTH-II levels at 30 min postinjection. The GABAA receptor agonist muscimol (0.1-10 micrograms/g) stimulated GTH-II in a dose-dependent manner. Baclofen, a GABAB receptor agonist, had a small but significant stimulatory effect at 1 and 10 micrograms/g; the amount of GTH-II released in response to baclofen was significantly less (P < 0.05) than that released by muscimol. Pretreatment of goldfish with bicuculline, a GABAA receptor antagonist, but not saclofen, a GABAB receptor antagonist, blocked the stimulatory effect of GABA on serum GTH-II. Elevation of brain and pituitary GABA levels with the GABA transaminase inhibitor, gamma-vinyl-GABA (GVG), decreased hypothalamic and pituitary dopamine (DA) turnover rates, indicating that GABA may stimulate GTH-II release in the goldfish by decreasing dopaminergic inhibition of GTH-II release. The release of GTH-II stimulated by muscimol and GVG was potentiated by pharmacological agents that decrease inhibitory dopaminergic tone, indicating that DA may also inhibit GABA-stimulated GTH-II release. Based on the linear 24-h accumulation of GABA in brain and pituitary after GVG injection, implantation of testosterone, estradiol, or progesterone, previously shown to regulate the serum GTH-II release response to gonadotropin-releasing hormone and GABA, was also found to modulate GABA synthesis in the brain and pituitary.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 76 (4) ◽  
pp. 2181-2191 ◽  
Author(s):  
R. Lipowsky ◽  
T. Gillessen ◽  
C. Alzheimer

1. Whole cell recordings were performed on the somata of CA1 pyramidal neurons in the rat hippocampal slice preparation Remote synaptic events were evoked by electrical stimulation of Schaffer collateral/commissural fibers in outer stratum radiatum. To isolate non-N-methyl-D-aspartate (NMDA)-mediated excitatory postsynaptic potentials (EPSPs), bath solutions contained the NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (D-APV; 30 microM), the gamma-aminobutyric acid-A (GABAA) receptor antagonist, bicuculline (10 microM), and the GABAB receptor antagonists, CGP 35348 (30 microM) or, in some experiments, saclofen (100 microM). 2. Local application of tetrodotoxin (TTX; 0.5-10 microM) into the proximal region of the apical dendrite reduced the peak amplitude of somatically recorded EPSPs by 28% on average. In contrast to dendritic TTX application, injection of TTX into the axosomatic region of the recorded neuron reduced EPSP amplitude by only 12% on average. 3. Spill-over of dendritically applied TTX into stratum pyramidale or into outer stratum radiatum was ruled out experimentally: somatic action potentials and field EPSPs recorded near the stimulation site in outer stratum radiatum remained unaffected by local TTX application. 4. Variations of somatic membrane potential revealed a strong voltage dependence of EPSP reduction after dendritic TTX application with the effect increasing substantially with membrane depolarization. Together with the field recordings from stratum radiatum, this finding argues strongly against a predominantly presynaptic site of TTX action. 5. We therefore ascribe the EPSP decrease after local TTX application to the proximal dendrite to suppression of dendritic Na+ channels, which we assume to give rise to a noninactivating (persistent) Na+ current (INaP) in the subthreshold voltage range. Our data suggest that presumed dendritic INaP produces considerable elevation of remote excitatory signals, thereby compensating for much of their electrotonic attenuation. 6. The experimental findings were related to computer simulations performed on a reduced compartmental model of the CA1 neuron. Because the experimental evidence available so far yields only indirect clues on the strength and distribution of INaP, we allowed considerable variations in these parameters. We also varied both size and location of synaptic input. 7. The major conclusions drawn from these simulations are the following: somatic INaP alone produces little EPSP enhancement; INaP density at the axon hillock/initial segment has to be at least twice the density at the soma to produce substantial EPSP amplification; depending on the density and distribution of dendritic INaP, < or = 80% of a remote synaptic potential arrives at the soma (compared with only 52% in a passive dendrite); synaptic potentials receive progressively more elevation by dendritic INaP the stronger they are; even if restricted to the proximal segment of the apical dendrite, INaP also affects dendritic processing at more distal segments; and spatial distribution rather than local density appears to be the most important parameter determining the role of dendritic INaP in synaptic integration.


Endocrinology ◽  
2020 ◽  
Vol 161 (5) ◽  
Author(s):  
Yali Liu ◽  
Xiaofeng Li ◽  
Xi Shen ◽  
Deyana Ivanova ◽  
Geffen Lass ◽  
...  

Abstract Progesterone can block estrogen-induced luteinising hormone (LH) surge secretion and can be used clinically to prevent premature LH surges. The blocking effect of progesterone on the LH surge is mediated through its receptor in the anteroventral periventricular nucleus (AVPV) of the hypothalamus. However, the underlying mechanisms are unclear. The preovulatory LH surge induced by estrogen is preceded by a significant reduction in hypothalamic dynorphin and gamma-aminobutyric acid (GABA) release. To test the detailed roles of dynorphin and GABA in an LH surge blockade by progesterone, ovariectomized and 17β-estradiol capsule-implanted (OVX/E2) mice received simultaneous injections of estradiol benzoate (EB) and progesterone (P) or vehicle for 2 consecutive days. The LH level was monitored from 2:30 pm to 8:30 pm at 30-minute intervals. Progesterone coadministration resulted in the LH surge blockade. A continuous microinfusion of the dynorphin receptor antagonist nor-BNI or GABAA receptor antagonist bicuculline into the AVPV from 3:00 pm to 7:00 pm reversed the progesterone-mediated blockade of the LH surge in 7 of 9 and 6 of 10 mice, respectively. In addition, these LH surges started much earlier than the surge induced by estrogen alone. However, 5 of 7 progesterone-treated mice did not show LH surge secretion after microinfusion with the GABAB receptor antagonist CGP-35348. Additionally, peripheral administration of kisspeptin-54 promotes LH surge-like release in progesterone treated mice. These results demonstrated that the progesterone-mediated suppression of the LH surge is mediated by an increase in dynorphin and GABAA receptor signaling acting though kisspeptin neurons in the AVPV of the hypothalamus in female mice.


1994 ◽  
Vol 72 (4) ◽  
pp. 1993-2003 ◽  
Author(s):  
R. A. Warren ◽  
A. Agmon ◽  
E. G. Jones

1. The thalamic reticular nucleus (RTN) has reciprocal connections with relay neurons in the dorsal thalamus. We used whole cell recording in a mouse in vitro slice preparation maintained at room temperature to study the synaptic interactions between the RTN and the ventroposterior thalamic nucleus (VP) during evoked low-frequency oscillations. 2. After a single electrical stimulus of the internal capsule, postsynaptic potentials (PSPs) were recorded in all VP and RTN neurons. In 76% of slices, there was an initial response followed by recurrent PSPs lasting for up to 8 s and with a frequency of approximately 2 Hz in both the VP and RTN. 3. In RTN neurons the initial response consisted of a fast excitatory postsynaptic potential (EPSP) that generated a burst of action potentials. Recurrent PSPs consisted of barrages of EPSPs that often reached burst threshold. The structure of subthreshold EPSP barrages in RTN neurons suggested that they were generated by bursting VP neurons. 4. In VP neurons the stimulus usually evoked a small EPSP followed by a large inhibitory postsynaptic potential (IPSP) that was often followed by a rebound burst. This initial response was often followed by a series of recurrent IPSPs presumably generated by RTN bursts, because intrinsic inhibitory neurons are absent in rodent VP. 5. IPSPs in VP neurons and recurrent EPSPs in RTN neurons were completely abolished by application of a gamma-aminobutyric acid-A (GABAA) receptor antagonist. A GABAB receptor antagonist produced no or little change in either the initial or recurrent response. 6. Recurrent IPSPs in VP neurons were abolished by glutamate receptor antagonists before the initial IPSP, which always remained stimulus dependent. 7. The dependency of recurring IPSPs in VP and recurring EPSPs in RTN upon GABA-mediated inhibition and excitatory amino acid-mediated excitation, plus the character of recurring EPSPs in the RTN strongly suggest that the recurring events were generated through reverse-reciprocal synaptic interactions between VP and RTN neurons. These synaptic interactions most likely play an important role in thalamic oscillations in behavior.


1993 ◽  
Vol 69 (2) ◽  
pp. 512-521 ◽  
Author(s):  
Y. I. Arshavsky ◽  
T. G. Deliagina ◽  
G. N. Gamkrelidze ◽  
G. N. Orlovsky ◽  
Y. V. Panchin ◽  
...  

1. The pteropod mollusk Clione limacina is a predator, feeding on the small pteropod mollusk Limacina helicina. Injection of gamma-aminobutyric acid (GABA) into the hemocoel of the intact Clione evoked some essential elements of the hunting and feeding behavior, i.e., protracting the tentacles, opening the mouth, and triggering the rhythmic movements of the buccal mass. This pattern resembled that evoked by presentation of the prey: Clione grasped the Limacina by its tentacles, extracted the prey's body from the shell and then swallowed it. 2. In electrophysiological experiments, several targets of GABA action have been found: 1) direct application of GABA to isolated cerebral motor neurons projecting to the protractor muscles of tentacles resulted in their excitation; 2) GABA activated the feeding rhythm generator located in the buccal ganglia; 3) GABA exerted excitatory or inhibitory effects on the receptor cells of statocysts, the effects being mediated by the efferent input to these cells; 4) GABA suppressed the defense reaction, which is an inhibition of the locomotor activity and of tentacle motor neurons, arising in response to stimulation of the head afferents; and 5) GABA potentiated an excitatory action of the serotoninergic metacerebral cells on the feeding rhythm generator. 3. Effects of GABA on the tentacle motor neurons and the feeding rhythm generator are pharmacologically distinguishable. The action of GABA on the feeding rhythm generator was mimicked by baclofen (which activates the GABAB receptors in mammalian neurons) and was not sensitive to bicuculline (the GABAA receptor antagonist in mammals). On the other hand, bicuculline competitively inhibited the GABA-induced excitation of the tentacle motor neurons. 4. GABAergic neurons have been located in the cerebral, pedal, and buccal ganglia by means of immunohistochemical methods.


1995 ◽  
Vol 74 (1) ◽  
pp. 1-11 ◽  
Author(s):  
I. Saitoh ◽  
N. Suga

1. The central auditory system of the mustached bat has arrays of delay-tuned (FM-FM combination-sensitive) neurons in the inferior colliculus, the medial geniculate body, and the auditory cortex. These neurons are tuned to particular echo delays, i.e., target distances. The neural mechanisms for creating the delay-tuned neurons involve delay lines, coincidence detection, and amplification. We have hypothesized that delay lines longer than 4 ms are created by inhibition occurring in the anterolateral division (ALD) of the central nucleus of the inferior colliculus. If this hypothesis is correct, suppression of inhibition occurring in the ALD must shorten the best delays of the collicular, thalamic, and cortical delay-tuned neurons. The aim of the present study is to test this hypothesis. Responses of single delay-tuned neurons in the FM-FM area of the auditory cortex were recorded with a tungsten-wire microelectrode, and the effects of iontophoretic microinjections of strychnine (STR) and/or bicuculline methiodide (BMI) into the ALD were examined on the responses of these neurons. 2. STR (glycine receptor antagonist) and/or BMI [gamma-aminobutyric acid-A (GABAA) receptor antagonist] injections into the ALD shortened the best delays of delay-tuned neurons in the FM-FM area with little change in their response patterns. The longer the best delay of a delay-tuned neuron, the larger the amount of shortening. 3. Inhibition mediated by glycine receptors plays a larger role in creating delay lines than that mediated by GABAA receptors, because STR and BMI, respectively, shortened the best delay of 91 and 74% of the neurons with best delays longer than 4.5 ms. 4. BMI has no effect on the best delays of delay-tuned neurons that were tuned to echo delays shorter than 4.5 ms. 5. The present data support the hypothesis that long delay lines utilized by delay-tuned neurons are created by inhibition occurring in the ALD of the inferior colliculus. However, the amount of shortening in delay lines by STR and/or BMI was generally smaller than that predicted by a neural network model. Therefore the present study partially answers the questions of where and how long delay lines were created.


2003 ◽  
Vol 284 (5) ◽  
pp. G768-G775 ◽  
Author(s):  
J. R. Grider

A two-compartment, flat-sheet preparation of rat colon was devised, which enabled exclusive measurement of longitudinal muscle activity during the ascending and descending phases of the peristaltic reflex. A previous study using longitudinal muscle strips revealed the operation of an integrated neuronal circuit consisting of somatostatin, opioid, and VIP/pituitary adenylate cyclase-activating peptide (PACAP)/nitric oxide synthase (NOS) interneurons coupled to cholinergic/tachykinin motor neurons innervating longitudinal muscle strips that could lead to descending contraction and ascending relaxation of this muscle layer. Previous studies in peristaltic preparations have also shown that an increase in somatostatin release during the descending phase causes a decrease in Met-enkephalin release and suppression of the inhibitory effect of Met-enkephalin on VIP/PACAP/NOS motor neurons innervating circular muscle and a distinct set of VIP/PACAP/NOS interneurons. The present study showed that in contrast to circular muscle, longitudinal muscle contracted during the descending phase and relaxed during the ascending phase. Somatostatin antiserum inhibited descending contraction and augmented ascending relaxation of longitudinal muscle, whereas naloxone had the opposite effect. VIP and PACAP antagonists inhibited descending contraction of longitudinal muscle and augmented ascending relaxation. Atropine and tachykinin antagonists inhibited descending contraction of longitudinal muscle. As shown in earlier studies, the same antagonists and antisera produced opposite effects on circular muscle. We conclude that longitudinal muscle contracts and relaxes in reverse fashion to circular muscle during the peristaltic reflex. Longitudinal muscle activity is regulated by excitatory VIP/PACAP/NOS interneurons coupled to cholinergic/tachykinin motor neurons innervating longitudinal muscle.


1987 ◽  
Vol 253 (2) ◽  
pp. G226-G231 ◽  
Author(s):  
J. R. Grider ◽  
G. M. Makhlouf

The participation of opioid neurons in the regulation of peristalsis was examined in a rat colonic segment that permits separate characterization of the components of the peristaltic reflex (ascending contraction and descending relaxation). Naloxone increased descending relaxation and decreased ascending contraction; opioid peptides [methionine-enkephalin (Met-Enk), dynorphin-13, and morphiceptin] had opposite effects. Naloxone increased, and Met-Enk decreased, vasoactive intestinal peptide (VIP) release during each component of the reflex. The changes in VIP release reinforced the direct effects of naloxone and opioid peptides on circular muscle tone, providing an explanation for the effects of these agents on the two components of the peristaltic reflex. Dynorphin release decreased during descending relaxation and increased during ascending contraction, reflecting corresponding changes in opioid neural activity. Based on these results a model is proposed, according to which a decrease in opioid neural activity during the initial phase (i.e., descending relaxation) results in direct and VIP-mediated decrease in circular muscle tone. Restoration of opioid neural activity during the subsequent phase (i.e., ascending contraction) increases circular muscle tone and reinforces the action of tachykinin and cholinergic motor neurons, which are the direct mediators of ascending contraction.


1991 ◽  
Vol 66 (5) ◽  
pp. 1538-1548 ◽  
Author(s):  
N. A. Lambert ◽  
A. M. Borroni ◽  
L. M. Grover ◽  
T. J. Teyler

1. gamma-Aminobutyric acidA (GABAA) receptor-mediated inhibition of pyramidal neuron dendrites was studied in area CA1 of the rat hippocampal slice preparation with the use of intracellular and extracellular recording and one-dimensional current source-density (CSD) analysis. 2. Electrical stimulation of Schaffer collateral/commissural fibers evoked monosynaptic excitatory postsynaptic potentials (EPSPs) and population EPSPs, which were followed by biphasic inhibitory postsynaptic potentials (IPSPs). In the presence of the excitatory amino acid receptor antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) and D,L-2-amino-5-phosphonovalerate (APV), stimulation in stratum radiatum evoked monosynaptic fast, GABAA and late, GABAB receptor-mediated IPSPs and fast and late positive field potentials recorded in s. radiatum. 3. Fast monosynaptic IPSPs and fast positive field potentials evoked in the presence of DNQX and APV were reversibly abolished by the GABAA receptor antagonist bicuculline methiodide (BMI; 30 microM) and were not changed by the GABAB receptor antagonist P-[3-aminopropyl]-P-diethoxymethylphosphinic acid (CGP 35,348; 0.1-1.0 mM). CGP 35,348 (0.1 mM) reversibly blocked late monosynaptic IPSPs and late positive field potentials. These results suggest that fast field potentials are GABAA receptor-mediated population IPSPs (GABAA, fast pIPSPs) and that late field potentials are GABAB receptor-mediated population IPSPs (GABAB, late pIPSPs). 4. Fast pIPSPs were reversibly abolished when the extracellular Cl- concentration [( Cl-]o) was reduced from 132 to 26 mM in parallel with a depolarizing shift in the reversal potential of fast IPSPs. Paired or repetitive stimulation in s. radiatum reversibly depressed fast pIPSPs and fast IPSPs. Paired-pulse depression of fast pIPSPs was reversibly antagonized by CGP 35,348 (0.4–0.8 mM). 5. Laminar analysis of s. radiatum-evoked fast pIPSPs and one-dimensional CSD analysis revealed active current sources in s. radiatum and passive current sinks in s. oriens and s. lacunosum moleculare. S. radiatum sources were abolished by pressure application of BMI in s. radiatum but not in s. oriens. Stimulation in s. oriens, s. pyramidale, or s. lacunosum moleculare evoked GABAA current sources horizontal to the stimulation site. Changes in the dendritic location of inhibitory current with changes in stimulus location paralleled changes in the distribution of excitatory current. 6. In the presence of 4-aminopyridine (50–100 microM), DNQX and APV long-lasting depolarizing GABAA receptor-mediated responses (LLDs) occurred spontaneously or could be evoked. Current sinks associated with s. radiatum-evoked LLDs were located in the same dendritic area as sources associated with hyperpolarizing fast IPSPs.(ABSTRACT TRUNCATED AT 400 WORDS)


1994 ◽  
Vol 72 (6) ◽  
pp. 2903-2910 ◽  
Author(s):  
I. Araki

1. The actions of gamma-aminobutyric acid (GABA) on sacral parasympathetic preganglionic (SPP) neurons were examined in slice preparations using the whole cell patch-clamp technique. 2. Inhibitory postsynaptic currents (IPSCs), which were evoked by focal electrical stimulation, were recorded from SPP neurons in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a glutamate receptor antagonist. The IPSCs were substantially reduced by strychnine (1 microM), a glycine receptor antagonist. The remaining IPSCs were completely blocked by bicuculline (20 microM), a GABAA receptor antagonist. The mean peak amplitude of bicuculline-sensitive, GABAergic currents recorded at -60 mV was 53.6 +/- 10.9%, mean +/- SD (n = 8), of that of the total IPSCs. The GABAergic currents were reversed in polarity at about -30 mV, near the Cl- equilibrium potential. 3. GABA (5-50 microM) induced inward currents in SPP neurons with symmetrical internal and external Cl- concentrations. This response was completely blocked by 100 microM bicuculline. Muscimol (2-8 microM), a GABAA agonist, mimicked the GABA-induced responses, whereas a GABAB receptor agonist, baclofen (20-200 microM), produced responses in only a few cells. The GABA-induced currents reversed their polarity at approximately 0 mV, near the Cl- equilibrium potential. When the internal Cl- concentration was reduced, the reversal potential was shifted according to the Nernst equation for Cl-. 4. GABA-induced currents exhibited an outward "hump" between -35 and 15 mV. This voltage range coincided with that at which a depolarization-induced inward whole cell current was elicited.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document