Secretin receptors mediating rat forestomach relaxation

1993 ◽  
Vol 264 (5) ◽  
pp. G863-G867 ◽  
Author(s):  
T. S. Steiner ◽  
A. W. Mangel ◽  
D. C. McVey ◽  
S. R. Vigna

Frozen sections of the rat stomach were incubated with 125I-labeled porcine secretin, and then secretin binding sites were localized by autoradiography. Saturable binding was observed only in the muscularis externa (circular and longitudinal smooth muscle layers) of the proximal nonglandular forestomach. Saturable binding was quantitated by densitometry. 125I-porcine secretin bound to a single class of high-affinity binding sites with a dissociation constant of 0.6 nM. Porcine and rat secretins were nearly equipotent in inhibiting saturable 125I-porcine secretin binding, and vasoactive intestinal polypeptide, peptide histidine-isoleucine, and glucagon were much weaker. Carbachol (100 microM) stimulated a sustained increase in tension in forestomach muscle in vitro, and porcine secretin caused relaxation of this stimulated contraction. We conclude that rat forestomach smooth muscle expresses a high-affinity specific secretin binding site that mediates relaxation. This putative secretin receptor may mediate some of the actions of secretin on gastric motility.

1981 ◽  
Vol 91 (1) ◽  
pp. 155-161 ◽  
Author(s):  
L. C. MURPHY ◽  
R. L. SUTHERLAND

A high-affinity, saturable antioestrogen binding site, which does not bind oestradiol, has been reported to exist in a number of oestrogen target tissues but not in the immature rat uterus. This study reports the results of a more thorough search for this site in immature rat uterine cytosol. When concentrations of uterine cytoplasmic oestrogen receptor were selectively depleted by translocation of 90–95% of the cytoplasmic oestrogen receptor to the nucleus, saturation analysis studies revealed that the antioestrogens, tamoxifen and CI 628, were bound to high-affinity, saturable binding sites which were present at about 2·5 times the concentration of the residual oestrogen receptor sites. Oestradiol could only partially inhibit the binding of tritiated antioestrogens to their saturable binding sites in this material indicating that a significant proportion of these sites were distinct from the oestrogen receptor sites. This was confirmed in experiments where oestrogen receptor sites were saturated in vitro with oestradiol and high-affinity, saturable sites for CI 628 and tamoxifen were still present. The CI 628 and tamoxifen had high affinity for these sites with dissociation constants of 1·0–1·6 nmol/l. These specific antioestrogen binding sites were present at about 5% of the concentration of oestrogen receptors in normal immature rat uterine cytosol which probably explains their previous lack of detection in this material.


1991 ◽  
Vol 276 (1) ◽  
pp. 41-46 ◽  
Author(s):  
V Shoshan-Barmatz ◽  
T A Pressley ◽  
S Higham ◽  
N Kraus-Friedmann

In this study, the binding of [3H]ryanodine to liver microsomal subfractions was investigated. The specific binding of [3H]ryanodine, as determined both by vacuum filtration and by ultracentrifugation, is to a single class of high-affinity binding sites with a Kd of 10 +/- 2.5 nM and density of 500 +/- 100 and 1200 +/- 200 fmol/mg of protein by the filtration and centrifugation methods respectively. [3H]Ryanodine binding reached equilibrium in about 1 min and 2 min at 36 degrees C and 24 degrees C respectively, and the half-time of dissociation at 37 degrees C was approx. 15 s. The binding of [3H]ryanodine is Ca(2+)-independent: it is slightly stimulated by NaCl, Mg2+, ATP and InsP3 but strongly inhibited by caffeine, diltiazem and sodium dantrolene. Thus the binding of ryanodine to endoplasmic reticulum membranes shares some of the characteristics of its binding to the sarcoplasmic reticulum but also differs from it in several important properties, such as its Ca(2+)-independence, its rapid association and dissociation, and its inhibition by caffeine. The structural similarities between the skeletal muscle and liver binding sites were further explored by employing in vitro DNA amplification techniques, using the known sequence of the skeletal muscle receptor as reference point. The data obtained with this method indicate that the liver does not process mRNA for the skeletal muscle ryanodine receptor.


2003 ◽  
Vol 284 (2) ◽  
pp. G328-G339 ◽  
Author(s):  
P. Singh ◽  
X. Lu ◽  
S. Cobb ◽  
B. T. Miller ◽  
N. Tarasova ◽  
...  

Proliferation and carcinogenesis of the large intestinal epithelial cells (IEC) cells is significantly increased in transgenic mice that overexpress the precursor progastrin (PG) peptide. It is not known if the in vivo growth effects of PG on IEC cells are mediated directly or indirectly. Full-length recombinant human PG (rhPG1–80) was generated to examine possible direct effects of PG on IEC cells. Surprisingly, rhPG (0.1–1.0 nM) was more effective than the completely processed gastrin 17 (G17) peptide as a growth factor. Even though IEC cells did not express CCK1and CCK2receptors (-R), fluorescently labeled G17 and Gly-extended G17 (G-Gly) were specifically bound to the cells, suggesting the presence of binding proteins other than CCK1-R and CCK2-R on IEC cells. High-affinity ( Kd= 0.5–1.0 nM) binding sites for125I-rhPG were discovered on IEC cells that demonstrated relative binding affinity for gastrin-like peptides in the order PG ≥ COOH-terminally extended G17 ≥ G-Gly > G17 > *CCK-8 (* significant difference; P< 0.05). In conclusion, our studies demonstrate for the first time direct growth effects of the full-length precursor peptide on IEC cells in vitro that are apparently mediated by the high-affinity PG binding sites that were discovered on these cells.


2018 ◽  
Vol 19 (9) ◽  
pp. 2489 ◽  
Author(s):  
Lin Zhang ◽  
Christian Aalkjaer ◽  
Vladimir Matchkov

Inhibition of the Na,K-ATPase by ouabain potentiates vascular tone and agonist-induced contraction. These effects of ouabain varies between different reports. In this study, we assessed whether the pro-contractile effect of ouabain changes with arterial diameter and the molecular mechanism behind it. Rat mesenteric small arteries of different diameters (150–350 µm) were studied for noradrenaline-induced changes of isometric force and intracellular Ca2+ in smooth muscle cells. These functional changes were correlated to total Src kinase and Src phosphorylation assessed immunohistochemically. High-affinity ouabain-binding sites were semi-quantified with fluorescent ouabain. We found that potentiation of noradrenaline-sensitivity by ouabain correlates positively with an increase in arterial diameter. This was not due to differences in intracellular Ca2+ responses but due to sensitization of smooth muscle cell contractile machinery to Ca2+. This was associated with ouabain-induced Src activation, which increases with increasing arterial diameter. Total Src expression was similar in arteries of different diameters but the density of high-affinity ouabain binding sites increased with increasing arterial diameters. We suggested that ouabain binding induces more Src kinase activity in mesenteric small arteries with larger diameter leading to enhanced sensitization of the contractile machinery to Ca2+.


2012 ◽  
Vol 449 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Chiara Saggioro ◽  
Anne Olliver ◽  
Bianca Sclavi

The DnaA protein is a key factor for the regulation of the timing and synchrony of initiation of bacterial DNA replication. The transcription of the dnaA gene in Escherichia coli is regulated by two promoters, dnaAP1 and dnaAP2. The region between these two promoters contains several DnaA-binding sites that have been shown to play an important role in the negative auto-regulation of dnaA expression. The results obtained in the present study using an in vitro and in vivo quantitative analysis of the effect of mutations to the high-affinity DnaA sites reveal an additional effect of positive autoregulation. We investigated the role of transcription autoregulation in the change of dnaA expression as a function of temperature. While negative auto-regulation is lost at dnaAP1, the effects of both positive and negative autoregulation are maintained at the dnaAP2 promoter upon lowering the growth temperature. These observations can be explained by the results obtained in vitro showing a difference in the temperature-dependence of DnaA–ATP binding to its high- and low-affinity sites, resulting in a decrease in DnaA–ATP oligomerization at lower temperatures. The results of the present study underline the importance of the role for autoregulation of gene expression in the cellular adaptation to different growth temperatures.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


1988 ◽  
Vol 254 (1) ◽  
pp. G124-G129 ◽  
Author(s):  
D. L. Vermillion ◽  
S. M. Collins

We examined in vitro changes in contractility of jejunal longitudinal muscle strips in rats infected with the nematode parasite Trichinella spiralis. Length-passive tension relationships were unchanged. However, muscle from infected rats on days 5 and 6 postinfection (PI) generated maximal active tension induced by carbachol at significantly less stretch (39.9 +/- 1.0 and 34.3 +/- 6.3%, respectively) than control tissues (66.0 +/- 2.3%). In infected rats on day 5 PI, the maximum tension generated by carbachol (1.6 +/- 0.4 g/mm2) and by 5-hydroxytryptamine (5-HTP) (2.6 +/- 0.1 g/mm2) was significantly greater than in control tissue (0.5 +/- 0.2 g/mm2). On removal of calcium from the medium, responses of muscle from control and infected rats were reduced in a proportionate manner. The increased responsiveness to carbachol and 5-HTP was maximal by day 5 PI and was associated with a decrease in the ED50 value for 5-HTP but not for carbachol. All changes were reversed by 23 days PI. These results indicate that T. spiralis infection in the rat is associated with alterations in jejunal longitudinal smooth muscle function.


1977 ◽  
Author(s):  
K. Subbarao ◽  
B. Rucinski ◽  
A. Summers ◽  
S. Niewiarowski

The interactions of dipyridamole with α1-acid glycoprotein of plasma and with human platelets are related to inhibition of adenosine uptake by platelets. One mole of dipyridamole binds to one mole of α1-acid glycoprotein with a dissociation constant (Kd) of 1.3 μM. It was found that platelets contain both high and low affinity binding sites for the drug. The binding of dipyridamole to the high affinity sites follows a Michaelis Menten binding pattern with a Kd of 0.04 μM. Approximately 2x104 dipyridamole molecules are bound at the high affinity sites of each platelet. The lower affinity sites bind the drug with a Kd of 4 μM. In the presence of α1acid glycoprotein the binding of dipyridamole to platelets is inhibited. Correspondingly, the dipyridamole inhibition of adenosine uptake by platelets is reduced 1000-fold by α1acid glycoprotein. Binding of dipyridamole to human platelets is essential for its inhibition of adenosine uptake by platelets. Dipyridamole reduced the [14C]-ATP to [14C]-ADP ratio in the platelets. Purified α1acid glycoprotein reversed these effects of dipyridamole on adenosine metabolism of platelets in a concentration dependent manner. A correlationwas observed between the level of circulating dipyridamole in plasma and the inhibition of [14C]-adenosine uptake by platelets of PRP samples of 12 human volunteers given different amounts of dipyridamole. The in vitro and ex vivo effects of dipyridamole on the [14C]-adenosine uptake by platelets were found to be identical. Our data suggest the presence of dipyridamole binding sites in platelets that regulate adenosine transport across the cell surface.


1992 ◽  
Vol 4 (2) ◽  
pp. 183 ◽  
Author(s):  
D Kelly ◽  
M McFadyen ◽  
TP King ◽  
PJ Morgan

Receptors for epidermal growth factor (EGF) were characterized on the intestinal membranes of newborn, sucking and weaned pigs. 125I-labelled EGF (125I-EGF) binding to membrane homogenates was time-dependent, saturable, linearly correlated to membrane protein and reversible. Analysis of saturation curve data revealed a single class of 125I-EGF binding sites in both newborn and weaned pigs. Receptor levels tended to be higher in weaned than in newborn pigs; the converse was true for the receptor affinity. In contrast, virtually no binding sites were found on the intestinal membranes of sucking pigs. Autoradiography in vitro of jejunal sections of newborn and weaned pigs demonstrated 125I-EGF receptors on both microvillar and basolateral surfaces of enterocytes, suggesting that luminal EGF could influence developmental processes in the intestine either directly or indirectly following transcytosis of the ligand.


2012 ◽  
Vol 79 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Romina Vargiu ◽  
Anna Perinu ◽  
Antonello De Lisa ◽  
Frank Tintrup ◽  
Francesco Manca ◽  
...  

Background Ureteral peristalsis is the result of coordinated mechanical motor performance of longitudinal and circular smooth muscle layer of the ureter wall. The main aim of this study was to characterize in smooth muscle of proximal segments of human ureter, the mechanical properties at level of muscle tissue and at level of myosin molecular motors. Methods Ureteral samples were collected from 15 patients, who underwent nephrectomy for renal cancer. Smooth muscle strips longitudinally and circularly oriented from proximal segments of human ureter were used for the in vitro experiments. Mechanical indices including the maximum unloaded shortening velocity (Vmax), and the maximum isometric tension (P0) normalized per cross-sectional area, were determined in vitro determined in electrically evoked contractions of longitudinal and circular smooth muscle strips. Myosin cross-bridge (CB) number per mm2 (Ψ) the elementary force per single CB (Ψ) and kinetic parameters were calculated in muscle strips, using Huxley's equations adapted to nonsarcomeric muscles. Results Longitudinal smooth muscle strips exhibited a significantly (p<0.05) faster Vmax (63%) and a higher P0 (40%), if compared to circular strips. Moreover, longitudinal muscle strips showed a significantly higher unitary force (Ψ) per CB. However, no significant differences were observed in CB number, the attachment (f1) and the detachment (g2) rate constants between longitudinal and circular muscle strips. Conclusions The main result obtained in the present work documents that the mechanical, energetic and unitary forces per CB of longitudinal layer of proximal ureter are better compared to the circular one; these preliminary findings suggested, unlike intestinal smooth muscle, a major role of longitudinal smooth muscle layer in the ureter peristalsis.


Sign in / Sign up

Export Citation Format

Share Document