Interaction of endogenous nitric oxide and CGRP in sensory neuron-induced gastric vasodilation

1995 ◽  
Vol 268 (5) ◽  
pp. G791-G796 ◽  
Author(s):  
R. Y. Chen ◽  
P. H. Guth

Stimulation of capsaicin-sensitive sensory nerves induces gastric mucosal hyperemia, which is mediated in part by both calcitonin gene-related peptide (CGRP) and nitric oxide (NO). In the present study, we used in vivo microscopy in anesthetized rats to determine 1) whether these agents were released locally at the submucosal level and, if so, 2) whether CGRP dilates arterioles via release of endothelium-derived NO. Intragastric capsaicin (160 microM) dilated submucosal arterioles from 25 +/- 3 to 67 +/- 8 microns. The intragastric capsaicin-induced vasodilation was markedly reversed not only by intravenous administration of the NO synthesis inhibitor NG-nitro-L-arginine methyl ester (L-NAME) but also by submucosal suffusion of either L-NAME or the CGRP receptor antagonist human CGRP-(8-37). The latter findings indicate that both NO and CGRP are released locally at the submucosal level. Submucosal application of CGRP induced dose-dependent dilation of gastric submucosal arterioles, which was significantly attenuated by L-NAME. However, at the same degree of vasodilation (42 microns), the dilation induced with submucosal CGRP was much less attenuated by NO synthesis inhibition (-28%) compared with that induced with intragastric capsaicin (-79%). This indicates that endothelium-derived NO released by CGRP was not the only source of submucosal NO in the latter response. There must be another as yet undetermined source of submucosal NO, e.g., possibly nitroxidergic nerves.

Author(s):  
Fulye Argunhan ◽  
Dibesh Thapa ◽  
Aisah Aniisah Aubdool ◽  
Emanuele Carlini ◽  
Kate Arkless ◽  
...  

The neuropeptide CGRP (calcitonin gene-related peptide) is a potent vasodilator, with a cardioprotective role, although the precise mechanisms are unclear. Here we show the ability of endogenous and exogenous CGRP to restore blood pressure, when nitric oxide synthesis is blocked, in a model of cardiovascular disease associated with endothelial dysfunction and impaired nitric oxide production. Male wild-type and αCGRP knockout mice received L-nitro-arginine methyl ester (150 mg/kg in drinking water) to induce a sustained hypertension with evidence of cardiovascular remodeling. The hypertensive response was exacerbated in L-nitro-arginine methyl ester-treated αCGRP knockouts, indicating that endogenous αCGRP acts in a protective manner, when nitric oxide production is diminished. Exogenous CGRP rescued αCGRP knockout mice from both hypertension and cardiovascular remodeling. Further studies using a nonrecovery protocol with a CGRP receptor antagonist (BIBN4096 BS) revealed that CGRP acts via the canonical CGRP receptor (CLR [calcitonin-like receptor]/RAMP1 [receptor activity-modifying protein]); with no effect of an antagonist (AC187) of a second CGRP-responsive receptor (the amylin-1 receptor, CTR [calcitonin receptor]/RAMP1). Blood flow, in resistance vessels of the exteriorised mesentery, was investigated. Noradrenaline–induced vasoconstriction with recovery, in L-nitro-arginine methyl ester-treated wild-type mice. However, αCGRP knockout, or BIBN4096 BS-treated wild-type mice demonstrated a similar constrictor response to noradrenaline, but significantly impaired blood flow recovery. The combined findings highlight that αCGRP protects against cardiovascular dysfunction, signaling via the canonical CGRP receptor and acting when nitric oxide production is lost, such as in endothelial dysfunction associated with vascular disease. These in vivo results support the proposal that CGRP provides a novel treatment for cardiovascular disease.


Cephalalgia ◽  
2010 ◽  
Vol 30 (10) ◽  
pp. 1233-1240 ◽  
Author(s):  
Lars Edvinsson ◽  
Kayi Y Chan ◽  
Sajedeh Eftekhari ◽  
Elisabeth Nilsson ◽  
René de Vries ◽  
...  

Introduction: Calcitonin gene-related peptide (CGRP) is a neuronal messenger in intracranial sensory nerves and is considered to play a significant role in migraine pathophysiology. Materials and methods: We investigated the effect of the CGRP receptor antagonist, telcagepant, on CGRP-induced cranial vasodilatation in human isolated cerebral and middle meningeal arteries. We also studied the expression of the CGRP receptor components in cranial arteries with immunocytochemistry. Concentration response curves to αCGRP were performed in human isolated cerebral and middle meningeal arteries in the absence or presence of telcagepant. Arterial slices were stained for RAMP1, CLR and actin in a double immunofluorescence staining. Results: In both arteries, we found that: (i) telcagepant was devoid of any contractile or relaxant effects per se; (ii) pretreatment with telcagepant antagonised the αCGRP-induced relaxation in a competitive manner; and (iii) immunohistochemistry revealed expression and co-localisation of CLR and RAMP1 in the smooth muscle cells in the media layer of both arteries. Conclusions: Our findings provide morphological and functional data on the presence of CGRP receptors in cerebral and meningeal arteries, which illustrates a possible site of action of telcagepant in the treatment of migraine.


Biochemistry ◽  
2003 ◽  
Vol 42 (22) ◽  
pp. 6904-6911 ◽  
Author(s):  
D. W. Sandall ◽  
N. Satkunanathan ◽  
D. A. Keays ◽  
M. A. Polidano ◽  
X. Liping ◽  
...  

1991 ◽  
Vol 261 (6) ◽  
pp. F1033-F1037 ◽  
Author(s):  
V. Lahera ◽  
M. G. Salom ◽  
F. Miranda-Guardiola ◽  
S. Moncada ◽  
J. C. Romero

The dose-dependent effects of intravenous infusions of nitric oxide (NO) synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME; 0.1, 1, 10, and 50 micrograms.kg-1.min-1), were studied in anesthetized rats to determine whether the inhibitory actions of L-NAME are manifested primarily in alterations of renal function or whether they are the consequences of the increase in systemic blood pressure. Mean arterial pressure (MAP) was not altered by the intravenous L-NAME infusions of 0.1 and 1.0 microgram.kg-1.min-1. However, 0.1 microgram.kg-1.min-1 L-NAME induced a 30% decrease in urine flow rate (UV). The administration of 1.0 microgram.kg-1.min-1 L-NAME, in addition to decreasing UV, also decreased urinary sodium excretion (UNaV) and renal plasma flow (RPF). The intravenous L-NAME infusions of 10.0 and 50.0 microgram.kg-1.min-1 intravenous L-NAME infusions of 10.0 and 50.0 microgram.kg-1.min-1 produced significant increases in MAP that reversed the initial fall in UV and UNaV, despite decreasing RPF and glomerular filtration rate (GFR). The administration of L-arginine alone (10 micrograms.kg-1.min-1) did not modify any of the parameters measured, but it effectively prevented all the hemodynamic and renal changes induced by the infusion of 50 micrograms.kg-1.min-1 L-NAME. These results suggest that the decrease in nitric oxide production induced by the intravenous infusion of L-NAME affects renal excretion of sodium and water in the absence of any significant change in blood pressure. At larger doses, L-NAME also produces hypertension that overrides the initial antinatriuretic effect.


Author(s):  
S. Padmaja ◽  
J. Mohan

Migraine is a mysterious disorder characterized by pulsating head ache, which is actually characterized to one side and comes in attacks which will be lasting for about 3-48 hours and can be associated with nausea,vomiting,sensitivity to sound,flashes of light,vertigoand diarrhoea [1]. Most of the drugs which are in current use for actue migraine like triptans, treats the disorder symptomatically. A novel group of drugs has been in research for the migraine which treats the disorder pathologically. Calcitonin gene – related peptide (CGRP) has a major role in the pathophysiology of the disorder and hence CGRP receptor antagonist, known as Gepants are in the research process [2]. Gepants are being studied for the efficacy of treating acute migraine [2]. This article will be a review article about the drug – Ubrogepant, which is approved for treatment of migraine with acute attacks in adults [3].


Cephalalgia ◽  
2013 ◽  
Vol 34 (8) ◽  
pp. 594-604 ◽  
Author(s):  
R Greco ◽  
AS Mangione ◽  
F Siani ◽  
F Blandini ◽  
M Vairetti ◽  
...  

Background The release of calcitonin gene-related peptide (CGRP) from trigeminal nerves plays a central role in the pathophysiology of migraine and clinical evidence shows an antimigraine effect for CGRP receptor antagonists. Systemic administration of nitroglycerin (NTG), a nitrovasodilator, consistently provokes spontaneous-like migraine attacks in migraine sufferers; in the rat, systemic NTG induces a condition of hyperalgesia, probably through the activation of cerebral/spinal structures involved in nociceptive transmission. Aim The aim of this article is to test the analgesic effect of the CGRP receptor antagonist MK-8825 in two animal models of pain that may be relevant for migraine: the tail flick test and the formalin test performed during NTG-induced hyperalgesia. Results MK-8825 showed analgesic activity when administered alone at both the tail flick test and the formalin test. Furthermore, the CGRP antagonist proved effective in counteracting NTG-induced hyperalgesia in both tests. MK-8825 indeed reduced the nociceptive behavior when administered either simultaneously or prior to (30–60 minutes before) NTG. Conclusion These data suggest that MK-8825 may represent a potential therapeutic tool for the treatment of migraine.


2021 ◽  
Vol 46 (4) ◽  
pp. 281
Author(s):  
F. Cipolla ◽  
M. Capi ◽  
L. Lionetto ◽  
D. De Bernardini ◽  
V. De Angelis ◽  
...  

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Hongyu Qiu ◽  
Eman Rashed ◽  
Christophe Depre

Aims: Stress-inducible heat shock protein 22 (Hsp22) confers protection against ischemia through induction of the inducible isoform of nitric oxide synthase (iNOS). Hsp22 over-expression in vivo significantly stimulates cardiac mitochondrial respiration, whereas Hsp22 deletion in vivo shows a reciprocal effect. It has also been shown in Drosophila that Hsp22 is expressed in the mitochondria that depends on its N-terminal domain. We hypothesized that Hsp22-mediated regulation of mitochondrial function is dependent upon its mitochondrial translocation together with iNOS. Methods and Results: Adenoviruses harboring either the full coding sequence of Hsp22 (Ad-WT-Hsp22) or a mutant lacking a 20 amino acid putative N-terminal mitochondrial localization sequence (Ad-N20-Hsp22) were generated, and infected in rat neonatal cardiomyocytes. Compared to β-Gal control, Ad-WT-Hsp22 accumulated in mitochondria by 2.5 fold (P<0.05), reduced chelerythrine-induced apoptosis by 60% (P<0.01), and increased oxygen consumption rate by 2-fold (P<0.01). This latter effect was abolished upon addition of the specific iNOS inhibitor, 1400W. Ad-WT-Hsp22 significantly increased global iNOS expression by about 2-fold (P<0.01), and also increased its mitochondrial localization by 2.5 fold vs β-gal (P<0.05). Upon comparable over-expression, the Ad-N20-Hsp22 mutant did not show significant mitochondrial translocation, protection against apoptosis or stimulation of mitochondrial respiration. Although Ad-N20-Hsp22 did increase global iNOS expression by 6-fold it did not significantly promote iNOS mitochondrial translocation. Conclusion: Translocation of both Hsp22 and iNOS to the mitochondria is necessary for the stimulation of oxidative metabolism and protection against apoptosis.


Sign in / Sign up

Export Citation Format

Share Document