Neurons in the vagal complex of the rat respond to mechanical and chemical stimulation of the GI tract

1998 ◽  
Vol 274 (2) ◽  
pp. G331-G341 ◽  
Author(s):  
Xueguo Zhang ◽  
William E. Renehan ◽  
Ronald Fogel

Perfusing the duodenum with acid solutions dramatically reduces gastric motility and acid secretion. We propose that the presence of acid in the proximal small intestine initiates a vagovagal reflex that excites inhibitory neurons in the nucleus of the solitary tract (NST) and reduces the activity of the neurons in the dorsal motor nucleus of the vagus nerve (DMNV). However, results from several investigations suggest that the relevant circuit may not be as simple as we had believed. The present study was designed to address this dilemma by employing intracellular and extracellular recording and intracellular labeling techniques to provide direct information on the activity of neurons in the NST and DMNV during and after intestinal exposure to acid solutions. The results obtained prove that NST and DMNV neurons respond to HCl in the duodenum. In some instances, these neurons were very stimulus specific, although the majority of the cells in our sample (47% of NST neurons and 86% of DMNV neurons) also responded to distension of the stomach and/or duodenum. It is important to note, however, that many of the more broadly responsive neurons in the dorsal vagal complex were able to distinguish between mechanical and chemical stimulation of the gastrointestinal (GI) tract. Most of the NST neurons that responded to duodenal perfusion with HCl were excited by this stimulus. Conversely, activity of most of the DMNV neurons decreased after the onset of the HCl stimulus. These findings verify the existence of a vagovagal reflex pathway initiated by duodenal perfusion with acid. Presumably, this reflex would decrease gastric motility and acid secretion, reducing the amount of acid that enters the duodenum and ultimately protecting the intestinal mucosa.

2007 ◽  
Vol 292 (1) ◽  
pp. R291-R307 ◽  
Author(s):  
Maureen T. Cruz ◽  
Erin C. Murphy ◽  
Niaz Sahibzada ◽  
Joseph G. Verbalis ◽  
Richard A. Gillis

Our primary purpose was to characterize vagal pathways controlling gastric motility by microinjecting l-glutamate into the dorsal motor nucleus of the vagus (DMV) in the rat. An intragastric balloon was used to monitor motility. In 39 out of 43 experiments, microinjection of l-glutamate into different areas of the DMV rostral to calamus scriptorius (CS) resulted in vagally mediated excitatory effects on motility. We observed little evidence for inhibitory effects, even with intravenous atropine or with activation of gastric muscle muscarinic receptors by intravenous bethanechol. Inhibition of nitric oxide synthase with Nω-nitro-l-arginine methyl ester (l-NAME) HCl did not augment DMV-evoked excitatory effects on gastric motility. Microinjection of l-glutamate into the DMV caudal to CS produced vagally mediated gastric inhibition that was resistant to l-NAME. l-Glutamate microinjected into the medial subnucleus of the tractus solitarius (mNTS) also produced vagally mediated inhibition of gastric motility. Motility responses evoked from the DMV were always blocked by ipsilateral vagotomy, while responses evoked from the mNTS required bilateral vagotomy to be blocked. Microinjection of oxytocin into the DMV inhibited gastric motility, but the effect was never blocked by ipsilateral vagotomy, suggesting that the effect may have been due to diffusion of oxytocin to the mNTS. Microinjection of substance P and N-methyl-d-aspartate into the DMV also produced inhibitory effects attributable to excitation of nearby mNTS neurons. Our results do not support previous studies indicating parallel vagal excitatory and inhibitory pathways originating in the DMV rostral to CS. Our results do support previous findings of vagal inhibitory pathways originating in the DMV caudal to CS.


1995 ◽  
Vol 268 (6) ◽  
pp. G943-G948 ◽  
Author(s):  
H. Yang ◽  
Y. Tache

The influence of peptide YY (PYY) microinjected into brain stem nuclei on gastric acid secretion (GAS) was investigated in urethan-anesthetized rats with gastric cannula. PYY (30-200 ng) microinjected into the dorsal motor nucleus of the vagus (DMN) induces a dose-related and vagal-dependent stimulation of GAS (net increase from 13 +/- 4 to 59 +/- 12 mumol/90 min). PYY (200 ng) injected intravenously intracisternally into sites adjacent to the DMN had no effect. GAS induced by PYY into the DMN was potentiated by coinjection of thyrotropin-releasing hormone (TRH, 30 ng) or the serotonin receptor (5-HT2) agonist (+/-)-1-(4-methyl-1-piperazinyl)-pyrrolo(1,2-a)quinoxaline (357 ng) and by microinjection of kainic acid (1 ng) into the raphe pallidus. Prepro-TRH-(160-169) (200 ng into the DMN) did not influence the stimulatory effect of PYY. PYY (200 ng) microinjected into the raphe pallidus, raphe obscurus, and nucleus ambiguous also increased GAS, although the response was of shorter duration than that in the DMN. These results indicate that PYY acts in brain stem nuclei involved in the vagal regulation of GAS and that PYY action in the DMN is potentiated by TRH or 5-HT2 receptor agonist acting at this site.


2005 ◽  
Vol 288 (3) ◽  
pp. R742-R750 ◽  
Author(s):  
Min Shi ◽  
Allison R. Jones ◽  
Manuel Ferreira ◽  
Niaz Sahibzada ◽  
Richard A. Gillis ◽  
...  

We reported previously that intravenously administered d-glucose acts in the central nervous system to inhibit gastric motility induced by hypoglycemia in anesthetized rats. The purpose of this study was to determine whether this effect is due to inhibition of dorsal motor nucleus of the vagus (DMV) cholinergic motoneurons, which synapse with postganglionic cholinergic neurons, or to excitation of DMV cholinergic neurons, which synapse with postganglionic nonadrenergic, noncholinergic (NANC) neurons, particularly nitrergic neurons. Three approaches were employed: 1) assessment of the efficacy of d-glucose-induced inhibition of gastric motility in hypoglycemic rats with and without inhibition of nitric oxide synthase [10 mg/kg iv nitro-l-arginine methyl ester (l-NAME)], 2) assessment of the efficacy of intravenous bethanechol (30 μg·kg−1·min−1) to stimulate gastric motility in hypoglycemic rats during the time of d-glucose-induced inhibition of gastric motility, and 3) determination of c-Fos expression in DMV neurons after intravenous d-glucose was administered to normoglycemic rats. Results obtained demonstrated that l-NAME treatment had no effect on d-glucose-induced inhibition of gastric motility; there was no reduction in the efficacy of intravenous bethanechol to increase gastric motility, and c-Fos expression was not induced by d-glucose in DMV neurons that project to the stomach. These findings indicate that excitation of DMV cholinergic motoneurons that synapse with postganglionic NANC neurons is not a significant contributing component of d-glucose-induced inhibition of gastric motility.


1985 ◽  
Vol 249 (1) ◽  
pp. G73-G84 ◽  
Author(s):  
F. D. Pagani ◽  
W. P. Norman ◽  
D. K. Kasbekar ◽  
R. A. Gillis

The purpose of our study was to determine the localization of sites within the dorsal motor nucleus of the vagus (DMV) of the cat that when stimulated would increase gastric motility. To do this, two types of experiments were performed. First, the retrograde tracer fast blue was injected into the antrum and pylorus, and labeled neurons in the DMV were identified. Second, electrical stimulation was performed in areas of the DMV labeled with fast blue as well as in nearby areas with no labeling while monitoring gastric motility, arterial pressure, and heart rate. Results from the first type of studies revealed that peak labeling in the DMV occurred between 0.56 and 1.56 mm rostral to obex. Electrical stimulation in this area using 100 microA, 0.2 ms duration pulses, and 50 Hz resulted in increases in antral and pyloric contractions in 20 animals. The magnitude of pyloric and antral responses elicited by stimulation of the DMV generally correlated to the number of cell bodies labeled with fast blue within the DMV. No changes in arterial pressure occurred, and only a slight (-4%) decrease in heart rate was observed. Maximal increases in motility occurred with 20 Hz (antrum) or 100 Hz (pylorus). These increases in motility were maintained even at 200- and 400-Hz stimulation. Ipsilateral vagotomy or pretreatment with propantheline bromide prevented the increases in gastric motility produced by electrical stimulation of the DMV. Electrical stimulation of more rostral sites in the DMV, the medial nucleus of the solitary tract (NTS), and an area within 1.0 mm medial to the DMV resulted in attenuated or no motility responses. Stimulation of the medial nucleus of the NTS did result in pronounced slowing in heart rate (-61 +/- 21 beats/min). These results suggest that there is a localization of a “stomach area” within the DMV and that electrical stimulation of this area results in gastric motility responses that are mediated by vagal fibers projecting directly to the stomach. In addition, electrical stimulation of the DMV results in selective effects on the gastrointestinal tract in that no pronounced changes in heart rate and arterial pressure occur.


2016 ◽  
pp. 693-700 ◽  
Author(s):  
F. HE ◽  
H.-B. AI

The aim of the study was to determine the effects of electrical stimulation of different locations in the central nucleus of amygdala (CNA) on gastric motility and spike activity in dorsal vagal complex. Gastric motility index (GMI) and firing rate (FR) of dorsal vagal complex neurons were measured in adult Wistar rats respectively. Neuronal spikes in dorsal vagal complex (DVC) were recorded extracellularly with single-barrel glass microelectrodes. Each type of responses elicited by electrical stimulation in medial (CEM) and lateral (CEL) subdivisions of CNA were recorded, respectively. GMI was significantly increased after stimulation of CEM (p<0.01), and significantly decreased in response to CEL stimulation (p<0.01). After stimulation of CEM, FR in medial nucleus of the solitary tract (mNST) decreased by 31.6 % (p<0.01) and that in dorsal motor nucleus of the vagus (DMNV) increased by 27.1 % (p<0.01). On the contrary, FR in mNST increased (p<0.01) and that in DMNV decreased in response to CEL stimulation (p<0.05). In conclusions, our findings indicated that different loci of CNA may mediate differential effects on gastric activity via changes in the firing of brainstem neurons controlling gut activity.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Xinyan Gao ◽  
Yongfa Qiao ◽  
Baohui Jia ◽  
Xianghong Jing ◽  
Bin Cheng ◽  
...  

Previous studies have demonstrated the efficacy of electroacupuncture at ST36 for patients with gastrointestinal motility disorders. While several lines of evidence suggest that the effect may involve vagal reflex, the precise molecular mechanism underlying this process still remains unclear. Here we report that the intragastric pressure increase induced by low frequency electric stimulation at ST36 was blocked by AP-5, an antagonist of N-methyl-D-aspartate receptors (NMDARs). Indeed, stimulating ST36 enhanced NMDAR-mediated, but not 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic-acid-(AMPA-) receptor-(AMPAR-) mediated synaptic transmission in gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). We also identified that suppression of presynapticμ-opioid receptors may contribute to upregulation of NMDAR-mediated synaptic transmission induced by electroacupuncture at ST36. Furthermore, we determined that the glutamate-receptor-2a-(NR2A-) containing NMDARs are essential for NMDAR-mediated enhancement of gastric motility caused by stimulating ST36. Taken together, our results reveal an important role of NMDA receptors in mediating enhancement of gastric motility induced by stimulating ST36.


Author(s):  
Courtney Clyburn ◽  
Kirsteen N Browning

The meticulous regulation of the gastrointestinal (GI) tract is required for the co-ordination of gastric motility and emptying, intestinal secretion, absorption, and transit as well as for the overarching management of food intake and energy homeostasis. Disruption of GI functions is associated with the development of severe GI disorders as well as the alteration of food intake and caloric balance. Functional GI disorders as well as the dysregulation of energy balance and food intake are frequently associated with, or result from, alterations in the central regulation of GI control. The faithful and rapid transmission of information from the stomach and upper GI tract to second order neurons of the nucleus of the tractus solitarius (NTS) relies on the delicate modulation of excitatory glutamatergic transmission, as does the relay of integrated signals from the NTS to parasympathetic efferent neurons of the dorsal motor nucleus of the vagus (DMV). Many studies have focused on understanding the physiological and pathophysiological modulation of these glutamatergic synapses, although their role in the control and regulation of GI functions has lagged behind that of cardiovascular and respiratory functions. The purpose of this review is to examine the current literature exploring the role of glutamatergic transmission in the DVC in the regulation of Gl functions.


1980 ◽  
Vol 238 (1) ◽  
pp. R57-R64 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

Experiments were done in cats anesthetized with chloralose, paralyzed and artificially ventilated cats to obtain electrophysiological evidence on the medullary site of origin of vagal cardioinhibitory fibers. The regions of the nucleus ambiguus (AMB), dorsal motor nucleus of the vagus (DMV), nucleus tractus solitarius (NTS), and external cuneate nucleus (ECN) were systematically explored for units responding both to antidromic stimulation of the cardiac branches of the vagus (CBV) and to orthodromic stimulation of the carotid sinus and aortic depressor nerves. Eighty-six single units conforming to these criteria were found in the medulla: 30 in the AMB, 26 in the DMV, 12 in the NTS, 8 in the NTS-DMV border region, and 10 in the ECN. Antidromically evoked spikes had durations of 0.5--2.5 ms and followed stimulation frequencies of 20--500 Hz. The axons of these units conducted at velocities of 3.3--20.8 m/s. The specificity of activation of medullary units by cardioinhibitory fibers was tested in 11 units, which were found to respond consistently with an antidromic spike to stimulation of CBV but not to stimulation of the thoracic vagus. In eight spinal animals low threshold (less than 15 microA) sites eliciting vagal bradycardia were found in the same medullary nuclei where cardioinhibitory units had been located. These results indicate that vagal cardioinhibitory axons, originate in at least three medullary nuclei, the AMB, DMV, and NTS. Unit activity from the ECN may have been recorded from carioinhibitory fibers because of the short duration of the spike potentials.


1975 ◽  
Vol 229 (3) ◽  
pp. 783-789 ◽  
Author(s):  
J Schwaber ◽  
N Schneiderman

Unit activity evoked by electrical stimulation of the aortic and vagus nerves was recorded in the dorsal motor nucleus and nucleus solitarius of unanesthetized rabbits. Cardioinhibitory cells which showed antidromic activation to stimulation of the vagus nerve and synaptic activation to stimulation of the aortic nerve were localized in lateral dorsal motor nucleus 0.5-0.8 mm anterior of the obex. Additionally, units were found that appeared to be interneurons in the medullary pathway subserving baroreceptor reflex effects on cardioinhibitory neurons. These cells were activated by aortic, and usually vagus, nerve stimulation, appeared to be polysynaptically activated, and were located in medial nucleus solitarius rostral to the obex. Neurons reflecting a cardiac rhythm but not activated by aortic nerve stimulation were also observed.


Sign in / Sign up

Export Citation Format

Share Document