Glutamine transporter in crypts compensates for loss of villus absorption in bovine cryptosporidiosis

2001 ◽  
Vol 281 (3) ◽  
pp. G645-G653 ◽  
Author(s):  
Anthony Blikslager ◽  
Elaine Hunt ◽  
Richard Guerrant ◽  
Marc Rhoads ◽  
Robert Argenzio

Cryptosporidium parvum infection represents a significant cause of diarrhea in humans and animals. We studied the effect of luminally applied glutamine and the PG synthesis inhibitor indomethacin on NaCl absorption from infected calf ileum in Ussing chambers. Infected ileum displayed a decrease in both mucosal surface area and NaCl absorption. Indomethacin and glutamine or its stable derivative alanyl-glutamine increased the net absorption of Na+in infected tissue in an additive manner and to a greater degree than in controls. Immunohistochemical and Western blot studies showed that in control animals neutral amino acid transport system ASC was present in villus and crypts, whereas in infected animals, ASC was strongly present only on the apical border of crypts. These results are consistent with PGs mediating the altered NaCl and water absorption in this infection. Our findings further illustrate that the combined use of a PG synthesis inhibitor and glutamine can fully stimulate Na+and Cl−absorption despite the severe villous atrophy, an effect associated with increased expression of a Na+-dependent amino acid transporter in infected crypts.

2021 ◽  
Vol 85 (3) ◽  
pp. 587-599
Author(s):  
Akane Sato ◽  
Takumi Kimura ◽  
Kana Hondo ◽  
Miyuki Kawano-Kawada ◽  
Takayuki Sekito

ABSTRACT In Saccharomyces cerevisiae, Avt4 exports neutral and basic amino acids from vacuoles. Previous studies have suggested that the GATA transcription factors, Gln3 and Gat1, which are key regulators that adapt cells in response to changes in amino acid status, are involved in the AVT4 transcription. Here, we show that mutations in the putative GATA-binding sites of the AVT4 promoter reduced AVT4 expression. Consistently, a chromatin immunoprecipitation (ChIP) assay revealed that Gat1-Myc13 binds to the AVT4 promoter. Previous microarray results were confirmed that gln3∆gat1∆ cells showed a decrease in expression of AVT1 and AVT7, which also encode vacuolar amino acid transporters. Additionally, ChIP analysis revealed that the AVT6 encoding vacuolar acidic amino acid exporter represents a new direct target of the GATA transcription factor. The broad effect of the GATA transcription factors on the expression of AVT transporters suggests that vacuolar amino acid transport is integrated into cellular amino acid homeostasis.


2001 ◽  
Vol 283 (1) ◽  
pp. 174-178 ◽  
Author(s):  
Roberta R. Alfieri ◽  
Pier-Giorgio Petronini ◽  
Mara A. Bonelli ◽  
Alessandro E. Caccamo ◽  
Andrea Cavazzoni ◽  
...  

2002 ◽  
Vol 282 (1) ◽  
pp. C196-C204 ◽  
Author(s):  
Yoko Okamoto ◽  
Masahiro Sakata ◽  
Kazuhiro Ogura ◽  
Toshiya Yamamoto ◽  
Masaaki Yamaguchi ◽  
...  

The neutral amino acid transport system L is a sodium-independent transport system in human placenta and choriocarcinoma cells. Recently, it was found that the heterodimer composed of hLAT1 (a light-chain protein) and 4F2 heavy chain (4F2hc), a type II transmembrane glycoprotein, is responsible for system L amino acid transport. We found that the mRNAs of 4F2hc and hLAT1 were expressed in the human placenta and a human choriocarcinoma cell line. The levels of the 4F2hc and hLAT1 proteins in the human placenta increased at full term compared with those at midtrimester. Immunohistochemical data showed that these proteins were localized mainly in the placental apical membrane. Data from leucine uptake experiments, Northern blot analysis, and immunoblot analysis showed that this transport system was partially regulated by protein kinase C and calcium ionophore in the human choriocarcinoma cell line. Our results suggest that the heterodimer of 4F2hc and hLAT1 may play an important role in placental amino acid transport system L.


2001 ◽  
Vol 281 (6) ◽  
pp. C1757-C1768 ◽  
Author(s):  
Takeo Nakanishi ◽  
Ramesh Kekuda ◽  
You-Jun Fei ◽  
Takahiro Hatanaka ◽  
Mitsuru Sugawara ◽  
...  

We have cloned a new subtype of the amino acid transport system N2 (SN2 or second subtype of system N) from rat brain. Rat SN2 consists of 471 amino acids and belongs to the recently identified glutamine transporter gene family that consists of system N and system A. Rat SN2 exhibits 63% identity with rat SN1. It also shows considerable sequence identity (50–56%) with the members of the amino acid transporter A subfamily. In the rat, SN2 mRNA is most abundant in the liver but is detectable in the brain, lung, stomach, kidney, testis, and spleen. When expressed in Xenopus laevis oocytes and in mammalian cells, rat SN2 mediates Na+-dependent transport of several neutral amino acids, including glycine, asparagine, alanine, serine, glutamine, and histidine. The transport process is electrogenic, Li+tolerant, and pH sensitive. The transport mechanism involves the influx of Na+ and amino acids coupled to the efflux of H+, resulting in intracellular alkalization. Proline, α-(methylamino)isobutyric acid, and anionic and cationic amino acids are not recognized by rat SN2.


1993 ◽  
Vol 265 (1) ◽  
pp. F137-F145 ◽  
Author(s):  
D. P. Jones ◽  
L. A. Miller ◽  
R. W. Chesney

We characterized taurine transport in two continuous renal epithelial cell lines: LLC-PK1, derived from the proximal tubule of the pig, and the Madin-Darby canine kidney (MDCK), which was originated from the distal tubule of the dog. In the LLC-PK1 cell line, taurine transport is greatest at the apical surface of the cell, whereas in the MDCK cell line taurine transport is greatest at the basolateral surface. Both apical and basolateral surfaces of LLC-PK1 and MDCK cells exhibit an adaptive response to the extracellular taurine concentration (medium taurine concentration). Only the basolateral surface of the MDCK cell responded to hyperosmolality with increased taurine accumulation. This indicates differential control of the beta-amino acid transport system by substrate and external tonicity. The function of the beta-amino acid transport system may be different depending on the cell. In the LLC-PK1 cell, there is net transepithelial movement of taurine and changes in transporter activity in response to supply of substrate. In contrast, taurine accumulation by the MDCK cell appears to be a mechanism for adaptation to osmotic stress.


Sign in / Sign up

Export Citation Format

Share Document