Cortical Bone Stem Cell-Derived Exosomes' Therapeutic Effect On Myocardial Ischemia Reperfusion and Cardiac Remodeling

Author(s):  
Giana J Schena ◽  
Emma K. Murray ◽  
Alycia N. Hildebrand ◽  
Alaina L. Headrick ◽  
Yijun Yang ◽  
...  

Heart failure is the one of the leading causes of death in the United States. Myocardial infarction (MI) is followed by cardiac remodeling involving extensive fibrosis and which can ultimately progress into heart failure. Previous studies have shown both that both post-MI and post-ischemia reperfusion (I/R), there is a reduction in scar size and improved cardiac function as a result of administration of cortical bone stem cell (CBSC) treatment. We investigated the effects of mouse CBSCs (mCBSC), human CBSCs (hCBSC), mCBSC-derived exosomes and hCBSC-derived exosomes on murine embryonic fibroblast (MEF) migration. Exosome depletion from the CBSC-CM enhanced the reduction in fibroblast migration, implying exosome contents are involved in fibroblast migration. To examine if exosomes decrease fibrotic activation, adult rat ventricular fibroblasts (ARVFs) and adult human cardiac fibroblasts (NHCFs) were treated with TGFβ to activate fibrotic signaling before treatment with mCBSC- and hCBSC-derived exosomes. hCBSC-derived exosomes caused a 100-fold decrease in human fibroblast activation. To further understand the signaling mechanisms regulating the protective decrease in fibrosis, we performed RNA sequencing on the NHCFs after hCBSC-derived exosome treatment. The group treated with both TGFβ and exosomes showed a decrease in small nucleolar RNA (snoRNA), known to be involved with ribosome stability. A 24hr I/R study on mice showed that injection of mCBSCs and mCBSC-derived exosomes into the ischemic region of an infarct had a protective effect against I/R injury. Additionally, we found that mCBSC-derived exosomes recapitulate the effects of CBSC treatment post-I/R, indicating exosomes are partly responsible for CBSC's therapeutic effects.

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Giana Schena ◽  
Hajime KUBO ◽  
Eric Feldsott ◽  
Alaina Headrick ◽  
Keith Koch ◽  
...  

Rationale: Heart failure is the one of the leading causes of death in the United States. Post-myocardial infarction is followed by cardiac remodeling that involves extensive fibrosis and ultimately progresses into heart failure. We have seen improvements in scar size and cardiac function as a result of administration of cortical bone stem cell-derived (CBSC) exosomes. Objectives: We investigated the mechanism through which CBSC-derived exosomes altered wound healing and reduced scar formation through in vitro experimentation. We continue to broaden our understanding of how CBSCs exert their anti-fibrotic effects. Methods and Results: We cultured adult rat ventricular fibroblasts and adult human cardiac fibroblasts and treated them +/- TGF β with mouse and human CBSC-derived exosomes, respectively. We saw a dose-dependent decrease in myofibroblast activation with increasing concentrations of mCBSC and hCBSC exosomes, with 100 fold decrease compared to baseline fibroblast activation in hCBSC treated cardiac fibroblasts (9.5 x 10 5 of 1.6 x 10 7 intensity), and by 40% in mCBSC treated cardiac fibroblasts (2.4 x 10 5 of 1.0 x 10 6 intensity). In the presence of TGFβ and 2.0 x 10 6 exosome particles/cell treated, the αSMA levels were still reduced by nearly 50% vs TGFβ alone (1.2 x 10 6 of 2.2 x 10 7 intensity). We performed RNA sequencing on both the rat and human cardiac fibroblasts in order to discover which fibrosis-related genes were being altered by CBSC exosomes treatment. Conclusions: Our findings show that the wound healing induced by CBSC exosome treatment post-MI involves the reduction of myofibroblast activation and decreasing the production of pro-fibrotic mRNA in cardiac fibroblasts and cardiac endothelial cells.


2019 ◽  
Author(s):  
Jiangbin Wu ◽  
Kadiam C Venkata Subbaiah ◽  
Li Huitong Xie ◽  
Feng Jiang ◽  
Deanne Mickelsen ◽  
...  

AbstractRationaleIncreased protein synthesis of pro-fibrotic genes is a common feature of cardiac fibrosis, a major manifestation of heart failure. Despite this important observation, critical factors and molecular mechanisms for translational control of pro-fibrotic genes during cardiac fibrosis remain unclear.ObjectiveThis study aimed to test the hypothesis that cardiac stress-induced expression of a bifunctional aminoacyl-tRNA synthetase (ARS), glutamyl-prolyl-tRNA synthetase (EPRS), is preferentially required for the translation of proline codon-rich (PRR) pro-fibrotic mRNAs in cardiac fibroblasts during cardiac fibrosis.Methods and ResultsBy analyses of multiple available unbiased large-scale screening datasets of human and mouse heart failure, we have discovered that EPRS acts as an integrated node among all the ARSs in various cardiac pathogenic processes. We confirmed that EPRS was induced at both mRNA and protein level (∼1.5-2.5 fold increase) in failing hearts compared with non-failing hearts using our cohort of human and mouse heart samples. Genetic knockout of one allele of Eprs globally (Eprs+/-) using CRISPR-Cas9 technology or in a myofibroblast-specific manner (Eprsflox/+; PostnMCM/+) strongly reduces cardiac fibrosis (∼50% reduction) in isoproterenol- and transverse aortic constriction-induced heart failure mouse models. Inhibition of EPRS by a prolyl-tRNA synthetase (PRS)-specific inhibitor, halofuginone (Halo), significantly decreased the translation efficiency of proline-rich collagens in cardiac fibroblasts. Furthermore, using transcriptome-wide RNA-Seq and polysome profiling-Seq in Halo-treated fibroblasts, we identified multiple novel Pro-rich genes in addition to collagens, such as Ltbp2 and Sulf1, which are translationally regulated by EPRS. As a major EPRS downstream effector, SULF1 is highly enriched in human and mouse myofibroblast. siRNA-mediated knockdown of SULF1 attenuates cardiac myofibroblast activation and collagen deposition.ConclusionsOur results indicate that EPRS preferentially controls the translational activation of proline codon-rich pro-fibrotic genes in cardiac fibroblasts and augments pathological cardiac remodeling.Novelty and SignificanceWhat is known?TGF-β and IL-11 increase synthesis of pro-fibrotic proteins during cardiac fibrosis.Many pro-fibrotic genes contain Pro genetic codon rich motifs such as collagens.EPRS is an essential house-keeping enzyme required for ligating Pro to tRNAPro for the synthesis of Pro-containing proteins.What New Information Does This Article Contribute?This study is a pioneering investigation of translational control mechanisms of pro-fibrotic gene expression in cardiac fibrosis.EPRS mRNA and protein expression are induced in failing human hearts and mouse hearts undergoing pathological cardiac remodeling.The first demonstration of the in vivo function of EPRS in cardiac remodeling. Heterozygous Eprs global knockout and myofibroblast-specific tamoxifen-inducible Eprs conditional knockout mice show reduced pathological cardiac fibrosis under stress, suggesting that the reduction of EPRS is cardioprotective.Identification of novel preferential translational target genes of EPRS. We found that EPRS regulates translation of Pro-rich (PRR) transcripts, which comprise most of the ECM and secretory signaling molecules. Among those targets, we identified multiple novel PRR genes such as LTBP2 and SULF1.SULF1 is validated as a myofibroblast marker protein in human and mouse heart failure and a potential anti-fibrosis target gene.In cardiac fibroblasts, the synthesis of pro-fibrotic proteins is upregulated by cardiac stressors to activate extracellular matrix deposition and impair cardiac function. In this study, we have discovered an EPRS-PRR gene axis that influences translational homeostasis of pro-fibrotic proteins and promotes pathological cardiac remodeling and fibrosis. EPRS is identified as a common node downstream of multiple cardiac stressors and a novel regulatory factor that facilitates pro-fibrotic mRNA translation in cardiac fibrosis. Global and myofibroblast-specific genetic ablation of EPRS can effectively reduce cardiac fibrosis. This study reveals a novel translational control mechanism that modulates cardiac fibrosis and heart function. Mild inhibition of PRR mRNA translation could be a general therapeutic strategy for the treatment of heart disease. These findings provide novel insights into the translational control mechanisms of cardiac fibrosis and will promote the development of novel therapeutics by inhibiting pro-fibrotic translation factors or their downstream effectors.


2019 ◽  
Vol 125 (Suppl_1) ◽  
Author(s):  
Giana Schena ◽  
Hajime Kubo ◽  
Yijun Yang ◽  
Eric Feldsott ◽  
Giulia Borghetti ◽  
...  

2011 ◽  
Vol 51 (4) ◽  
pp. 542-547 ◽  
Author(s):  
Michikado Iwata ◽  
Randy T. Cowling ◽  
Seon Ju Yeo ◽  
Barry Greenberg

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Masaki Tokutome ◽  
Tetsuya Matoba ◽  
Yasuhiro Nakano ◽  
Kaku Nakano ◽  
Kensuke Egashira

Background: Monocyte-mediated inflammation is a major mechanism of myocardial ischemia-reperfusion (IR) injury and cardiac remodeling. However, no anti-inflammatory therapy has been developed for clinical myocardial IR injury. Pioglitazone, a peroxisome proliferator-activated receptor (PPAR)γ agonist, has unique anti-inflammatory effects on monocyte/macrophage. Here we tested the hypothesis that nanoparticle-mediated targeting of pioglitazone into cardiomyocytes and inflammatory monocytes ameliorates IR injury and cardiac remodeling in preclinical animal models. Methods and Results: We formulated poly (lactic acid/glycolic acid) nanoparticle containing pioglitazone (Pio-NPs). In mouse IR model, nanoparticles were delivered predominantly to circulating monocytes and to cardiomyocytes and macrophages in the IR heart. Intravenous treatment with Pio-NPs containing ≥0.1 mg/kg of pioglitazone at the time of reperfusion reduced IR injury, which was canceled by the pretreatment with PPARγ antagonist GW9662 (Fig. A). In contrast, pioglitazone solution at doses up to 3.0 mg/kg showed no therapeutic effects (Fig. A). Pio-NPs reduced inflammatory gene expression and inhibited the recruitment of Ly6Chigh inflammatory monocytes into IR heart (Fig. B). Pio-NPs showed no therapeutic effects in mice lacking CCR2. In a mouse model of myocardial infarction, intravenous treatment with Pio-NPs for 3 days after LAD ligation attenuated cardiac remodeling, improved cardiac function, and reduced recruitment of macrophage and polarization of macrophages toward M2 phenotype (Fig. C, D). Finally, in a mini-pig model of myocardial IR injury, Pio-NPs induced cardioprotection from IR injury, indicating the pre-clinical proof of concept. Conclusion: Nanoparticle-mediated targeting of pioglitazone into cardiomyocytes and monocytes can be developed as a novel modality that offers organ protection by antagonizing monocyte-mediated inflammation in acute MI.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Michinari Nakamura ◽  
Peiyong Zhai ◽  
Dominic D Re ◽  
Junichi Sadoshima

Cardiac remodeling promotes heart failure (HF). Cardiomyocyte (CM) death is one of the mechanisms to develop cardiac remodeling. We recently reported that Mst1 phosphorylates Bcl-xL at Ser14, which promotes apoptosis by inducing dissociation of Bcl-xL from Bax and consequent activation of Bax in CMs. Its phosphorylation is increased in response to ischemia-reperfusion (IR) in an Mst1-dependent manner. However, the functional significance of endogenous Bcl-xL phosphorylation remains unclear in vivo. To address this question, knock-in (KI) mice with alanine mutation at Ser14 in Bcl-x were generated. At baseline, cardiac function was similar between wild-type (WT) and heterozygous KI (HKI) mice (EF 76% and 79%, respectively). HKI mice exhibited smaller % infarct area (30%) than WT (43%) (p=0.016) upon IR, suggesting that phosphorylation of endogenous Bcl-xL at Ser14 plays an essential role in mediating IR injury. In order to test the role of Bcl-xL phosphorylation in the development of HF, HKI and WT mice were subjected to permanent ligation of LAD for 4 weeks. During progression of cardiac remodeling, Mst1 was activated in both WT and HKI mice. Phosphorylation of Bcl-xL and Bcl-xS, an alternative transcriptional variant of Bcl-x, both at Ser14, were increased in WT mice, which were abrogated in HKI mice. The infarct area evaluated with TTC staining at Day 1 was similar in WT and HKI mice (59.1% and 61.2%, p=0.65). Four weeks after myocardial infarction (MI), WT mice exhibited lower cardiac contraction (EF 46.5%) and higher LVEDP (10.8mmHg) than those in HKI mice (EF 68.9% and LVEDP 7.0mmHg) (both p<0.05). Scar area and TUNEL-positive CMs were greater in WT (49.0% and 1.6%, respectively) than in HKI mice (29.2% and 0.4%, respectively) (both p<0.05). Cleaved caspase 3 and 9 were significantly increased (3.2- and 5.7-fold, respectively) in WT but not in HKI mice. In vitro experiments with overexpression of phospho-mimicking mutant (Bcl-xS-S14D) showed 13% reduction in cell viability compared with that of phospho-resistant mutant (Bcl-xS-S14A) (p=0.01%). Our results suggest that phosphorylation of Bcl-xL and Bcl-xS at Ser14 contributes to CM death in response to IR and chronic MI in vivo, thereby promoting cardiac remodeling and HF.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Jama Jahanyar ◽  
Keith A Youker ◽  
George P Noon ◽  
Guillermo Torre-Amione ◽  
Michael M Koerner ◽  
...  

Introduction: Previous studies have demonstrated the involvement of mast cells (MCs) in cardiac remodeling during heart failure. LVADs cause an influx of MCs into the failing heart, but the underlying mechanism is unknown. We hypothesize that stem cell factor (SCF) induces migration of MCs to the heart. This study investigates the potential role of SCF and its receptor (C-Kit) in promoting the recruitment of stem cell derived MCs during heart failure and following LVAD support. Methods: Myocardial samples were collected from 10 patients undergoing LVAD implantation (Pre-LVAD) paired with samples taken at the time of heart transplantation (Post-LVAD). Biopsies of 4 normal hearts served as controls. We assessed gene expression of SCF and C-Kit. Additionally, we stained for SCF, C-Kit and tryptase protein and utilized In-situ hybridization to determine the origin of SCF. Results: Real-time PCR: SCF mRNA is significantly increased (P<0.01) following mechanical circulatory support as compared to paired heart failure tissue. C-Kit mRNA was significantly increased post-LVAD, as compared to normal tissues (p<0.05). Immunohistochemistry: The C-Kit protein was only expressed on cardiac mast cells. In-Situ hybridization: SCF mRNA was found in endothelial cells, myocytes and interstitial cells. This was confirmed by antibody staining for the SCF protein. Conclusions: LVADs cause an increase of SCF and C-Kit gene expression during unloading. SCF appears to be an important mechanism for the recruitment and maturation of MCs involved in cardiac remodeling, and we suggest that pharmacologic or biologic modification of SCF may provide a new therapeutic path for heart failure treatment.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Joshua G Travers ◽  
Fadia A Kamal ◽  
Inigo Valiente-Alandi ◽  
Michelle L Nieman ◽  
Michelle A Sargent ◽  
...  

Cardiac fibroblasts are a critical cell population responsible for myocardial extracellular matrix homeostasis. Upon injury or pathologic stimulation, these cells transform to an activated myofibroblast state and play a fundamental role in myocardial fibrosis and remodeling. Chronic sympathetic overstimulation, a hallmark of heart failure, induces pathologic signaling through G protein βγ subunits and their interaction with G protein-coupled receptor kinase 2 (GRK2). We hypothesized that Gβγ-GRK2 inhibition/ablation after myocardial injury would attenuate pathologic myofibroblast activation and cardiac remodeling. The therapeutic potential of small molecule Gβγ-GRK2 inhibition alone or in combination with activated fibroblast- or myocyte-specific GRK2 ablation, each initiated after myocardial ischemia/reperfusion (I/R) injury, was investigated to evaluate possible salutary effects on post-I/R fibroblast activation, pathologic remodeling and cardiac function. Small molecule Gβγ-GRK2 inhibition initiated one week post-injury was cardioprotective in the I/R model of chronic heart failure, including preservation of cardiac contractility and reduction in cardiac fibrotic remodeling. Systemic small molecule Gβγ-GRK2 inhibition initiated one week post-I/R in cardiomyocyte-restricted GRK2 ablated mice (also post-I/R) demonstrated additional cardioprotection, suggesting a potential protective role beyond the cardiomyocyte. Inducible ablation of GRK2 in activated fibroblasts (i.e. myofibroblasts) post-I/R injury demonstrated significant functional cardioprotection with reduced myofibroblast transformation and fibrosis. Systemic small molecule Gβγ-GRK2 inhibition initiated one week post-I/R provided little to no further protection in mice with ablation of GRK2 in activated fibroblasts alone. Finally, Gβγ-GRK2 inhibition significantly attenuated activation characteristics of failing human cardiac fibroblasts isolated from end stage heart failure patients. These findings suggest a potential therapeutic role for Gβγ-GRK2 inhibition in limiting pathologic myofibroblast activation, interstitial fibrosis and heart failure progression.


2016 ◽  
Vol 102 (3) ◽  
pp. 803-812 ◽  
Author(s):  
Hideto Ozawa ◽  
Shigeru Miyagawa ◽  
Satsuki Fukushima ◽  
Emiko Itoh ◽  
Akima Harada ◽  
...  

Author(s):  
Javier Barallobre-Barreiro ◽  
Tamás Radovits ◽  
Marika Fava ◽  
Ursula Mayr ◽  
Wen-Yu Lin ◽  
...  

Background: Remodelling of the extracellular matrix (ECM) is a hallmark of heart failure (HF). Our previous analysis of the secretome of murine cardiac fibroblasts returned ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs 5) as one of the most abundant proteases. ADAMTS5 cleaves chondroitin sulphate proteoglycans (CSPGs) such as versican. The contribution of ADAMTS5 and its substrate versican to HF is unknown. Methods: Versican remodelling was assessed in mice lacking the catalytic domain of ADAMTS5 (Adamts5 △Cat ). Proteomics was applied to study ECM remodelling in left ventricular samples from HF patients, with a particular focus on the effects of common medications used for the treatment of HF. Results: Versican and versikine, an ADAMTS-specific versican cleavage product, accumulated in ischemic HF patients. Versikine was also elevated in a porcine model of cardiac ischemia/reperfusion injury and in murine hearts after angiotensin II (Ang II) infusion. In Adamts5 △Cat mice, Ang II infusion resulted in an aggravated versican build-up and hyaluronic acid disarrangement, accompanied by reduced levels of integrin beta 1, filamin A and connexin 43. Echocardiographic assessment of Adamts5 △Cat mice revealed a reduced ejection fraction and an impaired global longitudinal strain upon Ang II infusion. Cardiac hypertrophy and collagen deposition, however, were similar to littermate controls. In a proteomics analysis of a larger cohort of cardiac explants from ischemic HF patients (n=65), the use of β-blockers was associated with a reduction in ECM deposition, with versican being among the most pronounced changes. Subsequent experiments in cardiac fibroblasts confirmed that β1-adrenergic receptor stimulation increased versican expression. Despite similar clinical characteristics, HF patients treated with β-blockers had a distinct cardiac ECM profile. Conclusions: Our results in animal models and patients suggest that ADAMTS proteases are critical for versican degradation in the heart, and that versican accumulation is associated with impaired cardiac function. A comprehensive characterisation of the cardiac ECM in ischemic HF patients revealed that β−blockers may have a previously unrecognized beneficial effect on the cardiac CSPG content.


Sign in / Sign up

Export Citation Format

Share Document