Role of intracellular antioxidant enzymes after in vivo myocardial ischemia and reperfusion

2003 ◽  
Vol 284 (1) ◽  
pp. H277-H282 ◽  
Author(s):  
Steven P. Jones ◽  
Michaela R. Hoffmeyer ◽  
Brent R. Sharp ◽  
Ye-Shih Ho ◽  
David J. Lefer

Reactive oxygen species induce myocardial damage after ischemia and reperfusion in experimental animal models. Numerous studies have investigated the deleterious effects of ischemia-reperfusion (I/R)-induced oxidant production using various pharmacological interventions. More recently, in vitro studies have incorporated gene-targeted mice to decipher the role of antioxidant enzymes in myocardial reperfusion injury. We examined the role of cellular antioxidant enzymes in the pathogenesis of myocardial I/R (MI/R) injury in vivo in gene-targeted mice. Neither deficiency nor overexpression of Cu-Zn superoxide dismutase (SOD) altered the extent of myocardial necrosis. Overexpression of glutathione peroxidase did not affect the degree of myocardial injury. Conversely, overexpression of manganese (Mn)SOD significantly attenuated myocardial necrosis after MI/R. Transthoracic echocardiography was performed on MnSOD-overexpressing and wild-type mice that were subjected to a more prolonged period of reperfusion. Cardiac output was significantly depressed in the nontransgenic but not the transgenic MnSOD-treated mice. Anterior wall motion was significantly impaired in the nontransgenic mice. These findings demonstrate an important role for MnSOD but not Cu/ZnSOD or glutathione peroxidase in mice after in vivo MI/R.

2021 ◽  
Vol 12 ◽  
Author(s):  
Min Zhang ◽  
Li Wei ◽  
Saiyang Xie ◽  
Yun Xing ◽  
Wenke Shi ◽  
...  

Background: As a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, lithospermic acid (LA) has been identified as the pharmacological management for neuroprotection and hepatoprotection. However, the role and mechanism of lithospermic acid in the pathological process of myocardial ischemia-reperfusion injury are not fully revealed.Methods: C57BL/6 mice were subjected to myocardial ischemia and reperfusion (MI/R) surgery and pretreated by LA (50 mg/kg, oral gavage) for six consecutive days before operation. The in vitro model of hypoxia reoxygenation (HR) was induced by hypoxia for 24 h and reoxygenation for 6 h in H9C2 cells, which were subsequently administrated with lithospermic acid (100 μM). Nrf2 siRNA and dorsomorphin (DM), an inhibitor of AMPKα, were used to explore the function of AMPKα/Nrf2 in LA-mediated effects.Results: LA pretreatment attenuates infarct area and decreases levels of TnT and CK-MB in plasm following MI/R surgery in mice. Echocardiography and hemodynamics indicate that LA suppresses MI/R-induced cardiac dysfunction. Moreover, LA ameliorates oxidative stress and cardiomyocytes apoptosis following MI/R operation or HR in vivo and in vitro. In terms of mechanism, LA selectively activates eNOS, simultaneously increases nuclear translocation and phosphorylation of Nrf2 and promotes Nrf2/HO-1 pathway in vivo and in vitro, while cardioprotection of LA is abolished by pharmacological inhibitor of AMPK or Nrf2 siRNA in H9C2 cells.Conclusion: LA protects against MI/R-induced cardiac injury by promoting eNOS and Nrf2/HO-1 signaling via phosphorylation of AMPKα.


2018 ◽  
Vol 49 (6) ◽  
pp. 2320-2332 ◽  
Author(s):  
Guo Zu ◽  
Tingting Zhou ◽  
Ningwei Che ◽  
Xiangwen Zhang

Background/Aims: Ischemia-reperfusion (I/R) adversely affects the intestinal mucosa. The major mechanisms of I/R are the generation of reactive oxygen species (ROS) and apoptosis. Salvianolic acid A (SalA) is suggested to be an effective antioxidative and antiapoptotic agent in numerous pathological injuries. The present study investigated the protective role of SalA in I/R of the intestine. Methods: Adult male Sprague-Dawley rats were subjected to intestinal I/R injury in vivo. In vitro experiments were performed in IEC-6 cells subjected to hypoxia/ reoxygenation (H/R) stimulation to simulate intestinal I/R. TNF-α, IL-1β, and IL-6 levels were measured using enzyme-linked immunosorbent assay. Malondialdehyde and myeloperoxidase and glutathione peroxidase levels were measured using biochemical analysis. Apoptosis was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling staining or flow cytometry in vivo and in vitro. The level of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescin diacetate (DCFH-DA) staining. Western blotting was performed to determine the expression of heme oxygenase-1 (HO-1), Nrf2 and proteins associated with apoptosis. The mRNA expressions of Nrf2 and HO-1 were detected by quantitative real-time polymerase chain reaction in vivo and in vitro. Results: Malondialdehyde level and myeloperoxidase and glutathione peroxidase, TNF-α, IL-1β, and IL-6 levels group in intestinal tissue decreased significantly in the SalA pretreatment groups compared to the I/R group. SalA markedly abolished intestinal injury compared to the I/R group. SalA significantly attenuated apoptosis and increased Nrf2/HO-1 expression in vivo and in vitro. However, Nrf2 siRNA treatment partially abrogated the above mentioned effects of SalA in H/R-induced ROS and apoptosis in IEC-6 cells. Conclusion: The present study demonstrated that SalA ameliorated oxidation, inhibited the release of pro-inflammatory cytokines and alleviated apoptosis in I/R-induced injury and that these protective effects may partially occur via regulation of the Nrf2/ HO-1 pathways.


2018 ◽  
Vol 49 (5) ◽  
pp. 2060-2072 ◽  
Author(s):  
Daofeng Zheng ◽  
Zhongtang Li ◽  
Xufu Wei ◽  
Rui Liu ◽  
Ai Shen ◽  
...  

Background/Aims: Hepatic ischemia-reperfusion (I/R) injury, which is mainly induced by inflammation and unstable intracellular ions, is a major negative consequence of surgery that compromises hepatic function. However, the exact mechanisms of liver I/R injury have not been determined. Positive crosstalk with the Ca2+/CaMKII pathway is required for complete activation of the TLR4 pathway and inflammation. We previously found that miR-148a, which decreased in abundance with increasing reperfusion time, targeted and repressed the expression of CaMKIIα. In the present study, we examined the role of the miR-148a machinery in I/R-induced Ca2+/CaMKII and TLR4 signaling changes, inflammation, and liver dysfunction in vivo and in vitro. Methods: Liver function was evaluated by serum aminotransferase levels and hematoxylin-eosin (HE) staining. Inflammatory factors were detected by enzyme-linked immunosorbent assay. Gene and protein expression were assessed by RT-PCR and western blot. Small interfering RNA was used to silence target gene expression. HE staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to measure hepatic tissue apoptosis. These assays were performed to identify factors upregulated in hepatic I/R injury and downregulated by miR-148a. Results: We manifested that expression of CaMKIIα and phosphorylation of TAK1 and IRF3 were elevated in hypoxia/reoxygenation (H/R)-treated primary Kupffer cells (KCs) and liver tissue of I/R-treated mice, but these effects were attenuated by treatment with miR-148a mimic and were accompanied by the alleviation of liver dysfunction and hepatocellular apoptosis. Luciferase reporter experiments showed that miR148a suppressed luciferase activity by almost 60%. Moreover, knockdown of CaMKIIα in H/R KCs led to significant deficiencies in p-TAK1, P-IRF3, IL-6, and TNF-α, which was consistent with the effects of miR-148a overexpression. Otherwise, the same trend of activation of TAK1 and IRF3 and inflammatory factors in vitro was observed in the siTAK1 + siIRF3 group compared with the siCaMKIIα group. Conclusion: Taken together, we conclude that miR-148a may mitigate hepatic I/R injury by ameliorating TLR4-mediated inflammation via targeting CaMKIIα in vitro and in vivo.


RSC Advances ◽  
2017 ◽  
Vol 7 (55) ◽  
pp. 34473-34481 ◽  
Author(s):  
Xiao-Hui Zheng ◽  
Chun-Ping Liu ◽  
Zeng-Guang Hao ◽  
Yan-Fang Wang ◽  
Xian-Li Li

Linalool causes attenuation of IR induced cell death and apoptosis eitherin vitroorin vivo.


2013 ◽  
Vol 305 (4) ◽  
pp. H446-H458 ◽  
Author(s):  
Helen E. Collins ◽  
Xiaoyuan Zhu-Mauldin ◽  
Richard B. Marchase ◽  
John C. Chatham

Store-operated Ca2+ entry (SOCE) is critical for Ca2+ signaling in nonexcitable cells; however, its role in the regulation of cardiomyocyte Ca2+ homeostasis has only recently been investigated. The increased understanding of the role of stromal interaction molecule 1 (STIM1) in regulating SOCE combined with recent studies demonstrating the presence of STIM1 in cardiomyocytes provides support that this pathway co-exists in the heart with the more widely recognized Ca2+ handling pathways associated with excitation-contraction coupling. There is now substantial evidence that STIM1-mediated SOCE plays a key role in mediating cardiomyocyte hypertrophy, both in vitro and in vivo, and there is growing support for the contribution of SOCE to Ca2+ overload associated with ischemia/reperfusion injury. Here, we provide an overview of our current understanding of the molecular regulation of SOCE and discuss the evidence supporting the role of STIM1/Orai1-mediated SOCE in regulating cardiomyocyte function.


2015 ◽  
Vol 122 (4) ◽  
pp. 795-805 ◽  
Author(s):  
Jessica M. Olson ◽  
Yasheng Yan ◽  
Xiaowen Bai ◽  
Zhi-Dong Ge ◽  
Mingyu Liang ◽  
...  

Abstract Background: Anesthetic cardioprotection reduces myocardial infarct size after ischemia–reperfusion injury. Currently, the role of microRNA in this process remains unknown. MicroRNAs are short, noncoding nucleotide sequences that negatively regulate gene expression through degradation or suppression of messenger RNA. In this study, the authors uncovered the functional role of microRNA-21 (miR-21) up-regulation after anesthetic exposure. Methods: MicroRNA and messenger RNA expression changes were analyzed by quantitative real-time polymerase chain reaction in cardiomyocytes after exposure to isoflurane. Lactate dehydrogenase release assay and propidium iodide staining were conducted after inhibition of miR-21. miR-21 target expression was analyzed by Western blot. The functional role of miR-21 was confirmed in vivo in both wild-type and miR-21 knockout mice. Results: Isoflurane induces an acute up-regulation of miR-21 in both in vivo and in vitro rat models (n = 6, 247.8 ± 27.5% and 258.5 ± 9.0%), which mediates protection to cardiomyocytes through down-regulation of programmed cell death protein 4 messenger RNA (n = 3, 82.0 ± 4.9% of control group). This protective effect was confirmed by knockdown of miR-21 and programmed cell death protein 4 in vitro. In addition, the protective effect of isoflurane was abolished in miR-21 knockout mice in vivo, with no significant decrease in infarct size compared with nonexposed controls (n = 8, 62.3 ± 4.6% and 56.2 ± 3.2%). Conclusions: The authors demonstrate for the first time that isoflurane mediates protection of cardiomyocytes against oxidative stress via an miR-21/programmed cell death protein 4 pathway. These results reveal a novel mechanism by which the damage done by ischemia/reperfusion injury may be decreased.


2018 ◽  
Vol 314 (6) ◽  
pp. G655-G667 ◽  
Author(s):  
Zhao Lei ◽  
Meihong Deng ◽  
Zhongjie Yi ◽  
Qian Sun ◽  
Richard A. Shapiro ◽  
...  

Liver ischemia-reperfusion (I/R) injury occurs through induction of oxidative stress and release of damage-associated molecular patterns (DAMPs), including cytosolic DNA released from dysfunctional mitochondria or from the nucleus. Cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS) is a cytosolic DNA sensor known to trigger stimulator of interferon genes (STING) and downstream type 1 interferon (IFN-I) pathways, which are pivotal innate immune system responses to pathogen. However, little is known about the role of cGAS/STING in liver I/R injury. We subjected C57BL/6 (WT), cGAS knockout (cGAS−/−), and STING-deficient (STINGgt/gt) mice to warm liver I/R injury and that found cGAS−/− mice had significantly increased liver injury compared with WT or STINGgt/gt mice, suggesting a protective effect of cGAS independent of STING. Liver I/R upregulated cGAS in vivo and also in vitro in hepatocytes subjected to anoxia/reoxygenation (A/R). We confirmed a previously published finding that hepatocytes do not express STING under normoxic conditions or after A/R. Hepatocytes and liver from cGAS−/− mice had increased cell death and reduced induction of autophagy under hypoxic conditions as well as increased apoptosis. Protection could be restored in cGAS−/− hepatocytes by overexpression of cGAS or by pretreatment of mice with autophagy inducer rapamycin. Our findings indicate a novel protective role for cGAS in the regulation of autophagy during liver I/R injury that occurs independently of STING. NEW & NOTEWORTHY Our studies are the first to document the important role of cGAS in the acute setting of sterile injury induced by I/R. Specifically, we provide evidence that cGAS protects liver from I/R injury in a STING-independent manner.


Author(s):  
Naseer Ahmed

Abstract Cardioprotection is a very challenging area in the field of cardiovascular sciences. Myocardial damage accounts for nearly 50% of injury due to reperfusion, yet there is no effective strategy to prevent this to reduce the burden of heart failure. During last couple of decades, by combining genetic and bimolecular studies, many new drugs have been developed to treat hypertension, heart failure, and cancer. The use of percutaneous coronary intervention has reduced the mortality and morbidity of acute coronary syndrome dramatically. However, there is no standard therapy available that can mitigate cardiac reperfusion injury, which contributes to up to half of myocardial infarcts. Literature shows that the activation of sphingosine receptors, which are G protein-coupled receptors, induces cardioprotection both in vitro and in vivo. The exact mechanism of this protection is not clear yet. In this review, we discuss the mechanism of ischemia reperfusion injury and the role of the FDA-approved sphingosine 1 phosphate drug fingolimod in cardioprotection.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Vlad G Zaha ◽  
Dake Qi ◽  
Hui-Young Lee ◽  
Xiaoyue Hu ◽  
Xiaohong Wu ◽  
...  

AMP-activated kinase (AMPK) is a key stress responsive kinase that regulates cellular adaptation to metabolic stress. Inactivation of AMPK in “kinase-dead” (KD) mice increases myocardial damage following ischemia-reperfusion (IR). We have also shown decreased mitochondrial respiration and increased mitochondrial reactive oxygen species (ROS) production and susceptibility to mitochondrial transition pore opening in KD hearts following IR. The aim of this study was to establish the importance of mitochondrial ROS production and downstream deleterious signaling to mediate tissue damage in absence of active AMPK in the heart. Detoxification of mitochondrial ROS requires conversion of hydrogen peroxide to water, therefore, we studied the effect of transgenic expression of mitochondrial catalase (MCAT) in wild type (WT) and KD mice. MCAT prevents mitochondrial hydrogen peroxide production independent of mitochondrial energy production. Myocardial necrosis was assessed in vitro after global ischemia-reperfusion and in vivo after LAD ligation and reperfusion. Mitogen activated protein kinase kinase 4 (MKK4) and downstream c-Jun terminal kinase (JNK) expression and phosphorylation was assessed in vivo. Increased necrosis in KD hearts following mild global ischemia (15 minutes) - reperfusion (10 minutes) in vitro, was prevented by expression of MCAT (WT vs. KD 17.8±4.1 vs. 50±4.1%, p<0.05 and MCAT-WT vs. MCAT-KD 16.9±4.8 vs. 29.3±4.4%, n.s., and factorial p<0.05). Total JNK protein was not increased in WT and KD hearts with or without expression of MCAT. After coronary occlusion in vivo, KD mice showed increased cardiac activation of MKK4/JNK pathway (p<0.05) as well as greater myocardial necrosis (p<0.05). MCAT expression prevented the excessive cardiac JNK activation observed during IR in KD mice in vivo. Inhibition of JNK with SP600125 (10μM) during in vivo IR also resulted in a significant decrease in necrosis in KD hearts (WT vs. KD 9.1±0.7 vs. 28.2±2.9%, p<0.05 and WT vs. KD with SP600125 8.5±0.5 vs. 10.2±1.1%, n.s. and factorial p<0.05, percentage of equivalent area at risk). Thus, AMPK activation during IR prevents excess mitochondrial reactive oxygen production and consequent JNK signaling, thus protecting against myocardial injury.


Author(s):  
Sherif Rashad ◽  
Teiji Tominaga ◽  
Kuniyasu Niizuma

AbstractFollowing stress, tRNA is cleaved to generate tRNA halves (tiRNAs). These stress-induced small RNAs have been shown to regulate translation during stress. To date, angiogenin is considered the main enzyme that cleaves tRNA at its anti-codon site to generate 35 ~ 45 nucleotide long 5′ and 3′ tiRNA halves, however recent reports indicate the presence of angiogenin-independent cleavage. We previously observed tRNA cleavage pattern occurring away from the anti-codon site. To explore this non-canonical cleavage, we analyze tRNA phenotypical cleavage patterns in rat model of ischemia reperfusion and in two rat cell lines. In vivo mitochondrial tRNAs were prone to this non-canonical cleavage pattern. In vitro, however, both cytosolic and mitochondrial tRNAs could be cleaved non-canonically. We also evaluated the roles of angiogenin and its inhibitor, RNH1, in regulating tRNA cleavage during stress. Our results suggest that mitochondrial stress has an important regulatory role in angiogenin-mediated tRNA cleavage. Angiogenin does not appear to regulate the non-canonical cleavage pattern of tRNA, and RNH1 does not affect it as well. Finally, we verified our previous findings of the stress-specific role of Alkbh1 in regulating tRNA cleavage and showed a strong influence of stress type on Alkbh1-mediated tRNA cleavage and that Alkbh1 impacts non-canonical tRNA cleavage.


Sign in / Sign up

Export Citation Format

Share Document