Allometric scaling of wall shear stress from mice to humans: quantification using cine phase-contrast MRI and computational fluid dynamics

2006 ◽  
Vol 291 (4) ◽  
pp. H1700-H1708 ◽  
Author(s):  
Joan M. Greve ◽  
Andrea S. Les ◽  
Beverly T. Tang ◽  
Mary T. Draney Blomme ◽  
Nathan M. Wilson ◽  
...  

Allometric scaling laws relate structure or function between species of vastly different sizes. They have rarely been derived for hemodynamic parameters known to affect the cardiovascular system, e.g., wall shear stress (WSS). This work describes noninvasive methods to quantify and determine a scaling law for WSS. Geometry and blood flow velocities in the infrarenal aorta of mice and rats under isoflurane anesthesia were quantified using two-dimensional magnetic resonance angiography and phase-contrast magnetic resonance imaging at 4.7 tesla. Three-dimensional models constructed from anatomic data were discretized and used for computational fluid dynamic simulations using phase-contrast velocity imaging data as inlet boundary conditions. WSS was calculated along the infrarenal aorta and compared between species to formulate an allometric equation for WSS. Mean WSS along the infrarenal aorta was significantly greater in mice and rats compared with humans (87.6, 70.5, and 4.8 dyn/cm2, P < 0.01), and a scaling exponent of −0.38 ( R2 = 0.92) was determined. Manipulation of the murine genome has made small animal models standard surrogates for better understanding the healthy and diseased human cardiovascular system. It has therefore become increasingly important to understand how results scale from mouse to human. This noninvasive methodology provides the opportunity to serially quantify changes in WSS during disease progression and/or therapeutic intervention.

Angiology ◽  
2009 ◽  
Vol 60 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Sanjay Misra ◽  
Alex A. Fu ◽  
Khamal D. Misra ◽  
James F. Glockner ◽  
Debabrata Mukhopadhyay

Purpose The purpose of the present article was to determine the changes in luminal vessel area, blood flow, and wall shear stress in both the inflow artery and the venous stenosis of arteriovenous polytetrafluoroethylene (PTFE) grafts. Methods and materials Polytetrafluoroethylene grafts were placed from the carotid artery to the ipsilateral jugular vein in 8 castrated juvenile male pigs. Contrast-enhanced magnetic resonance angiography (MRA) with cine phase-contrast magnetic resonance imaging (MRI) was performed 2 weeks after graft placement. Results The mean wall shear stress at the venous stenosis was 4 times higher than the control vein, while the inflow artery was only 2-fold higher. By day 14, venous stenosis had formed, which was characterized by narrowed area and elevated blood flow. Conclusion By day 14, there is venous stenosis formation in porcine arteriovenous PTFE grafts with increased shear stress with decreased area when compared to control vein.


Author(s):  
Patrick Winter ◽  
Kristina Andelovic ◽  
Thomas Kampf ◽  
Fabian Tobias Gutjahr ◽  
Julius Heidenreich ◽  
...  

Abstract Purpose 4D flow cardiovascular magnetic resonance (CMR) and the assessment of wall shear stress (WSS) are non-invasive tools to study cardiovascular risks in vivo. Major limitations of conventional triggered methods are the long measurement times needed for high-resolution data sets and the necessity of stable electrocardiographic (ECG) triggering. In this work an ECG-free retrospectively synchronized method is presented that enables accelerated high-resolution measurements of 4D flow and WSS in the aortic arch of mice. Methods 4D flow and WSS were measured in the aortic arch of 12-week-old wildtype C57BL/6 J mice (n = 7) with a radial 4D-phase-contrast (PC)-CMR sequence, which was validated in a flow phantom. Cardiac and respiratory motion signals were extracted from the radial CMR signal and were used for the reconstruction of 4D-flow data. Rigid motion correction and a first order B0 correction was used to improve the robustness of magnitude and velocity data. The aortic lumen was segmented semi-automatically. Temporally averaged and time-resolved WSS and oscillatory shear index (OSI) were calculated from the spatial velocity gradients at the lumen surface at 14 locations along the aortic arch. Reproducibility was tested in 3 animals and the influence of subsampling was investigated. Results Volume flow, cross-sectional areas, WSS and the OSI were determined in a measurement time of only 32 min. Longitudinal and circumferential WSS and radial stress were assessed at 14 analysis planes along the aortic arch. The average longitudinal, circumferential and radial stress values were 1.52 ± 0.29 N/m2, 0.28 ± 0.24 N/m2 and − 0.21 ± 0.19 N/m2, respectively. Good reproducibility of WSS values was observed. Conclusion This work presents a robust measurement of 4D flow and WSS in mice without the need of ECG trigger signals. The retrospective approach provides fast flow quantification within 35 min and a flexible reconstruction framework.


Author(s):  
Diego Gallo ◽  
Raffaele Ponzini ◽  
Filippo Consolo ◽  
Diana Massai ◽  
Luca Antiga ◽  
...  

The initiation and progression of vessel wall pathologies have been linked to disturbances of blood flow and altered wall shear stress. The development of computational techniques in fluid dynamics, together with the increasing performances of hardware and software allow to routinely solve problems on a virtual environment, helping to understand the role of biomechanics factors in the healthy and diseased cardiovascular system and to reveal the interplay of biology and local fluid dynamics nearly intractable in the past, opening to detailed investigation of parameters affecting disease progression. One of the major difficulties encountered when wishing to model accurately the cardiovascular system is that the flow dynamics of the blood in a specific vascular district is strictly related to the global systemic dynamics. The multiscale modelling approach for the description of blood flow into vessels consists in coupling a detailed model of the district of interest in the framework of a synthetic description of the surrounding areas of the vascular net [1]. In the present work, we aim at evaluating the effect of boundary conditions on wall shear stress (WSS) related vessel wall indexes and on bulk flow topology inside a carotid bifurcation. To do it, we coupled an image-based 3D model of carotid bifurcation (local computational domain), with a lumped parameters (0D) model (global domain) which allows for physiological mimicking of the haemodynamics at the boundaries of the 3D carotid bifurcation model here investigated. Two WSS based blood-vessel wall interaction descriptors, the Time Averaged WSS (TAWSS), and the Oscillating Shear Index (OSI) were considered. A specific Lagrangian-based “bulk” blood flow descriptor, the Helical Flow Index (HFI) [2], was calculated in order to get a “measure” of the helical structure in the blood flow. In a first analysis the effects of the coupled 0D models on the 3D model are evaluated. The results obtained from the multiscale simulation are compared with the results of simulations performed using the same 3D model, but imposing a flow rate at internal carotid (ICA) outlet section equal to the maximum (60%) and the minimum (50%) flow division obtained out from ICA in the multiscale model simulation (the presence of the coupled 0D model gives variable internal/external flow division ratio during the cardiac cycle), and a stress free condition on the external carotid (ECA).


Sign in / Sign up

Export Citation Format

Share Document