Estradiol reduces F2α-isoprostane production in cultured human endothelial cells

2002 ◽  
Vol 283 (6) ◽  
pp. H2644-H2649 ◽  
Author(s):  
Carlos Hermenegildo ◽  
Marı́a Cinta Garcı́a-Martı́nez ◽  
Juan J. Tarı́n ◽  
Antonio Cano

Free radical-generated F2α-isoprostanes are a group of compounds with vasoconstrictor properties. To investigate whether estradiol exerts antioxidant actions modifying F2α-isoprostane production, cultured human umbilical vein endothelial cells were exposed to estradiol and other compounds and F2α-isoprostanes were measured in culture medium. Exposure to 1 and 10 nM estradiol for 24 h reduced F2α-isoprostane production by 36 and 49%, respectively ( P < 0.001 vs. control). Exposure to antiestrogens alone (ICI-182780 or EM-652) slightly reduced F2α-isoprostanes ( P < 0.05 vs. control), but much less than exposure to estradiol ( P < 0.05). ICI-182780 reversed the estradiol-induced reduction of F2α-isoprostane concentration ( P < 0.05). Along with time-course analysis, these results suggest that estradiol effects were mediated through estrogen receptor-dependent and -independent mechanisms. Progestogens alone (progesterone or medroxyprogesterone acetate) did not modify F2α-isoprostane production at any of the tested concentrations (1, 10, and 100 nM). Progesterone completely reversed estradiol-induced reduction of F2α-isoprostane production ( P < 0.05 vs. control and estradiol), but medroxyprogesterone acetate did not ( P < 0.05 vs. control).

1988 ◽  
Vol 255 (1) ◽  
pp. 179-184 ◽  
Author(s):  
T J Hallam ◽  
R Jacob ◽  
J E Merritt

Human umbilical-vein endothelial cells stimulated with thrombin or histamine show an increase in [Ca2+]i (cytoplasmic free calcium concn.) that is maintained well above the basal pre-stimulated value as long as agonist and a source of extracellular Ca2+ are present. These results provide circumstantial evidence that agonists stimulate influx of Ca2+ across the plasma membrane and into the cytoplasm. Here, we have used Mn2+ as the extracellular bivalent cation which can bind to the fluorescent Ca2+ indicator fura-2 to quench its fluorescence completely. Human umbilical-vein endothelial cells were loaded with fura-2 and, in the presence of extracellular Mn2+, thrombin and histamine were shown to cause quenching of the intracellular dye. This result demonstrates conclusively that agonists can stimulate the influx of bivalent cations. Stimulated discharge of Ca2+ from intracellular stores and influx of Mn2+ were temporally resolved in the same cells to show that release of Ca2+ from intracellular stores clearly precedes influx. Influx of Mn2+ was also demonstrated when extracellular Mn2+ was added after agonist at a time when [Ca2+]i had fallen back to the basal value, showing that influx is not dependent on elevated [Ca2+]i.


1995 ◽  
Vol 73 (05) ◽  
pp. 812-818 ◽  
Author(s):  
Taro Ohji ◽  
Hajime Urano ◽  
Akira Shirahata ◽  
Minoru Yamagishi ◽  
Ken Higashi ◽  
...  

SummaryTo investigate the effects of transforming growth factor-betas (TGF-βs) on endothelial anticoagulant activity, we assayed thrombomodulin (TM) activity and antigen levels of human umbilical vein endothelial cells (HUVECs) incubated with TGF-βs in vitro. TGF-β1 suppressed surface TM activity and surface TM antigen levels maximally 12 h after incubation in dose-dependent manners. TGF-β2 was almost equipotent with TGF-β1 for the suppression of them. Both TGF-βs suppressed total TM antigen level in HUVECs, and the time course of the suppression was similar to that of the cell surface TM antigen level. The maximal reductions of TM mRNA levels by TGF-βs were observed at several hours ahead of those observed in both surface and total TM antigen levels, suggesting that the TGF-β-mediated suppression of TM antigen of HUVECs is primarily regulated at the TM mRNA level. Our present work suggests that the down-modulation of TM level induced by TGF-βs in HUVECs contributes in vivo to promoting the thrombogenesis either at the sites of injury of vessel walls, such as atherosclerotic lesions where TGF-β1 is released from platelets, smooth muscle cells and monocytes, or at neovascular walls in tumors secreting TGF-β2.


Endothelium ◽  
1998 ◽  
Vol 6 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Ingvill Jensen ◽  
Christine Hanssen Rinaldo ◽  
Lillian Nordbø Berge ◽  
Ole Morten Seternes ◽  
Ugo Moens

2009 ◽  
Vol 55 (9) ◽  
pp. 1728-1731 ◽  
Author(s):  
Susanne B Schwedler ◽  
Thomas Hansen-Hagge ◽  
Matthias Reichert ◽  
Daniel Schmiedeke ◽  
Reinhard Schneider ◽  
...  

Abstract Background: C-reactive protein (CRP) is a risk marker for cardiovascular disease and has been implicated in atherogenesis. In atherosclerotic plaques, it colocalizes with oxidized LDL (oxLDL) and promotes oxLDL uptake by macrophages, suggesting an important cross-talk between CRP and lipid processing. A growing body of evidence indicates the existence of distinct configurations of human CRP, native pentameric (nCRP) and structurally modified monomeric (mCRP), that elicit opposing bioactivities in vitro and in vivo. Here, we tested the impact of mCRP and nCRP on the uptake of acetylated LDL (acLDL), which is internalized by receptors similar to those of oxLDL in human endothelial cells. Methods: We cultured human umbilical vein endothelial cells (HUVECs) for 8 h with mCRP or nCRP (10–100 mg/L) and measured the uptake of acLDL (10–100 mg/L) over a 20-h period by FACS analysis. To assess the receptors involved, we used function-blocking antibodies against Fc γ receptor CD16 (FcγRIII) and CD32 (FcγRII), and RT-PCR analysis of CD16, CD32, and the receptor for oxidized LDL (LOX-1). Uptake of acLDL and CRP isoforms was visualized by immunofluorescence. Results: Culture of HUVECs with mCRP, but not nCRP, decreased uptake of acLDL, which was not prevented by anti-CD16 or anti-CD32 antibodies. LOX-1, CD16, and CD32 were undetectable by RT-PCR. Immunofluorescence showed decreased cytoplasmic acLDL staining in human umbilical vein endothelial cells (HUVECs) treated with mCRP, but not with nCRP. Conclusions: Monomeric CRP, but not nCRP, decreased acLDL uptake in human endothelial cells independent of CD16, CD32, or LOX-1. Our data support a protective role of mCRP in cardiovascular disease.


1982 ◽  
Vol 93 (2) ◽  
pp. 343-348 ◽  
Author(s):  
D F Mosher ◽  
M J Doyle ◽  
E A Jaffe

Thrombospondin, the major glycoprotein released from alpha-granules of thrombin-stimulated platelets, is a disulfide-bonded trimer of 160 kilodalton subunits and apparently functions as a platelet lectin. Because cultured human umbilical vein endothelial cells synthesize and secrete a glycoprotein (GP-160) which is a disulfide-bonded multimer of 160 kdalton subunits, the possibility that GP-160 is thrombospondin was investigated. Tritiated GP-160 could be immunoisolated from [3H]leucine-labeled endothelial cell postculture medium using a rabbit antiserum to human platelet thrombospondin. Thrombospondin and GP-160 comigrated in two different two-dimensional electrophoretic systems. Both proteins are disulfide-bonded trimers of acidic 160-kdalton subunits. A competitive radioimmunoassay for binding of 125I-thrombospondin to the rabbit antibodies indicated that 49 micrograms of thrombospondin antigen per 10(6) confluent endothelial cells accumulated in postculture medium over 24 h. Thus, endothelial cells secrete large amounts of a glycoprotein that is identical or very similar to platelet thrombospondin.


Sign in / Sign up

Export Citation Format

Share Document