Overexpression of eNOS in brain stem reduces enhanced sympathetic drive in mice with myocardial infarction

2005 ◽  
Vol 289 (5) ◽  
pp. H2159-H2166 ◽  
Author(s):  
Koji Sakai ◽  
Yoshitaka Hirooka ◽  
Hideaki Shigematsu ◽  
Takuya Kishi ◽  
Koji Ito ◽  
...  

Reduced nitric oxide (NO) in the brain might contribute to enhanced sympathetic drive in heart failure (HF). The aim of this study was to determine whether increased NO production induced by local overexpression of endothelial NO synthase (eNOS) in the nucleus tractus solitarius (NTS) of the brain stem reduces the enhanced sympathetic drive in mice with HF. Myocardial infarction (MI) was induced in mice by ligating the left coronary artery. MI mice exhibited left ventricular dilatation and a reduced left ventricular ejection fraction. Urinary norepinephrine excretion in MI mice was greater than that in sham-operated mice, indicating that sympathetic drive was enhanced in this model. Thus this model has features that are typical of HF. Western blot analysis and immunohistochemical staining for neuronal NOS (nNOS) indicated that nNOS protein expression was significantly reduced in the brain stem of MI mice. MI mice had a significantly smaller increase in blood pressure evoked by intracisternal injection of NG-monomethyl-l-arginine than sham-operated mice. Adenoviral vectors encoding either eNOS (AdeNOS) or β-galactosidase (Adβgal) were transfected into the NTS to examine the effect of increased NO production in the NTS on the enhanced sympathetic drive in HF. After the gene transfer, urinary norepinephrine excretion was reduced in AdeNOS-transfected MI mice but not in Adβgal-transfected MI mice. These results indicate that nNOS expression in the brain stem, especially in the NTS, is reduced in the MI mouse model of HF, and increased NO production induced by overexpression of eNOS in the NTS attenuates the enhanced sympathetic drive in this model.

Author(s):  
С.А. Крыжановский ◽  
И.Б. Цорин ◽  
Е.О. Ионова ◽  
В.Н. Столярук ◽  
М.Б. Вититнова ◽  
...  

Цель исследования - разработка трансляционной модели хронической сердечной недостаточности (ХСН) у крыс, позволяющей, с одной стороны, изучить тонкие механизмы, лежащие в основе данной патологии, а с другой стороны, выявить новые биомишени для поиска и изучения механизма действия инновационных лекарственных средств. Методика. Использован комплекс эхокардиографических, морфологических, биохимических и молекулярно-биологических исследований, позволяющий оценивать и дифференцировать этапы формирования ХСН. Результаты. Динамические эхокардиографические исследования показали, что ХСН формируется через 90 дней после воспроизведения переднего трансмурального инфаркта миокарда. К этому времени у животных основной группы отмечается статистически значимое по сравнению со 2-ми сут. после воспроизведения экспериментального инфаркта миокарда снижение ФВ левого желудочка сердца (соответственно 55,9 ± 1,4 и 63,9 ± 1,6%, р = 0,0008). Снижение насосной функции сердца (на 13% по сравнению со 2-ми сут. после операции и на ~40% по сравнению с интактными животными) сопровождается увеличением КСР и КДР (соответственно с 2,49 ± 0,08 до 3,91 ± 0,17 мм, р = 0,0002, и с 3,56 ± 0,11 до 5,20 ± 0,19 мм, р = 0,0001), то есть к этому сроку развивается сердечная недостаточность. Результаты эхокардиографических исследований подтверждены данными морфометрии миокарда, продемонстрировавшими дилатацию правого и левого желудочков сердца. Параллельно проведенные гистологические исследования свидетельствуют о наличии патогномоничных для данной патологии изменений миокарда (постинфарктный кардиосклероз, компенсаторная гипертрофия кардиомиоцитов, очаги исчезновения поперечной исчерченности мышечных волокон и т.д.) и признаков венозного застоя в легких и печени. Биохимические исследования выявили значимое увеличение концентрации в плазме крови биохимического маркера ХСН - мозгового натрийуретического пептида. Данные молекулярно-биологических исследований позволяют говорить о наличии гиперактивности ренин-ангиотензин-альдостероновой и симпатоадреналовой систем, играющих ключевую роль в патогенезе ХСН. Заключение. Разработана трансляционная модель ХСН у крыс, воспроизводящая основные клинико-диагностические критерии этого заболевания. Показано наличие корреляции между морфометрическими, гистологическими, биохимическими и молекулярными маркерами прогрессирующей ХСН и эхокардиографическими диагностическими признаками, что позволяет использовать неинвазивный метод эхокардиографии, характеризующий состояние внутрисердечной гемодинамики, в качестве основного критерия оценки наличия/отсутствия данной патологии. Aim. Development of a translational model for chronic heart failure (CHF) in rats to identify new biotargets for finding and studying mechanisms of innovative drug effect in this disease. Methods. A set of echocardiographic, morphological, biochemical, and molecular methods was used to evaluate and differentiate stages of CHF development. Results. Dynamic echocardiographic studies showed that CHF developed in 90 days after anterior transmural myocardial infarction. By that time, left ventricular ejection fraction was significantly decreased in animals of the main group compared with rats studied on day 2 after experimental myocardial infarction (55.9 ± 1.4% vs . 63.9 ± 1.6%, respectively, p<0.0008). The decrease in heart’s pumping function (by 13% compared with day 2 after infarction and by approximately 40% compared to intact animals) was associated with increased ESD and EDD (from 2.49 ± 0.08 to 3.91 ± 0.17 mm, p = 0.0002, and from 3.56 ± 0.11 to 5.20 ± 0.19 mm, respectively, p = 0.0001); therefore, heart failure developed by that time. The results of echocardiographic studies were confirmed by myocardial morphometry, which demonstrated dilatation of both right and left ventricles. Paralleled histological studies indicated presence of the changes pathognomonic for this myocardial pathology (postinfarction cardiosclerosis, compensatory hypertrophy of cardiomyocytes, foci of disappeared transverse striation of muscle fibers, etc.) and signs of venous congestion in lungs and liver. Biochemical studies demonstrated a significant increase in plasma concentration of brain natriuretic peptide, a biochemical marker of CHF. Results of molecular studies suggested hyperactivity of the renin-angiotensin-aldosterone and sympathoadrenal systems, which play a key role in the pathogenesis of CHF. Conclusions. A translational model of CHF in rats was developed, which reproduced major clinical and diagnostic criteria for this disease. Morphometric, histological, biochemical, and molecular markers for progressive CHF were correlated with echocardiographic diagnostic signs, which allows using this echocardiographic, noninvasive method characterizing the intracardiac hemodynamics as a major criterion for the presence / absence of this pathology.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
D Von Lewinski ◽  
B Merkely ◽  
I Buysschaert ◽  
R.A Schatz ◽  
G.G Nagy ◽  
...  

Abstract Background Regenerative therapies offer new approaches to improve cardiac function after acute ST-elevation myocardial infarction (STEMI). Mobilization of stem cells and homing within the infarcted area have been identified as the key mechanisms for successful treatment. Application of granulocyte-colony stimulating factor (G-CSF) is the least invasive way to mobilize stem cells while DDP4-inhibitor facilitates homing via stromal cell-derived factor 1 alpha (SDF-1α). Dutogliptin, a novel DPP4 inhibitor, combined with stem cell mobilization using G-CSF significantly improved survival and reduced infarct size in a murine model. Purpose We initiated a phase II, multicenter, randomized, placebo-controlled efficacy and safety study (N=140) analyzing the effect of combined application of G-CSF and dutogliptin, a small molecule DPP-IV-inhibitor for subcutaneous use after acute myocardial infarction. Methods The primary objective of the study is to evaluate the safety and tolerability of dutogliptin (14 days) in combination with filgrastim (5 days) in patients with STEMI (EF &lt;45%) following percutaneous coronary intervention (PCI). Preliminary efficacy will be analyzed using cardiac magnetic resonance imaging (cMRI) to detect &gt;3.8% improvement in left ventricular ejection fraction (LV-EF). 140 subjects will be randomized to filgrastim plus dutogliptin or matching placebos. Results Baseline characteristics of the first 26 patients randomized (24 treated) in this trial reveal a majority of male patients (70.8%) and a medium age of 58.4 years (37 to 84). During the 2-week active treatment period, 35 adverse events occurred in 13 patients, with 4 rated as serious (hospitalization due to pneumonia N=3, hospitalization due to acute myocardial infarction N=1), and 1 adverse event was rated as severe (fatal pneumonia), 9 moderate, and 25 as mild. 6 adverse events were considered possibly related to the study medication, including cases of increased hepatic enzymes (N=3), nausea (N=1), subcutaneous node/suffusion (N=1) and syncope (N=1). Conclusions Our data demonstrate that the combined application of dutogliptin and G-CSF appears to be safe on the short term and feasible after acute myocardial infarction and may represent a new therapeutic option in future. Funding Acknowledgement Type of funding source: Other. Main funding source(s): This research is funded by the sponsor RECARDIO, Inc., 1 Market Street San Francisco, CA 94150, USA. RECARDIO Inc. is funding the complete study. The Scientific Board of RECARDIO designed the study. Data Collection is at the participating sites. Interpretation of the data by the Scientific Board and Manuscript written by the authors and approved by the Sponsor


Author(s):  
Agata Nowak-Lis ◽  
Tomasz Gabryś ◽  
Zbigniew Nowak ◽  
Paweł Jastrzębski ◽  
Urszula Szmatlan-Gabryś ◽  
...  

The presence of a well-developed collateral circulation in the area of the artery responsible for the infarction improves the prognosis of patients and leads to a smaller area of infarction. One of the factors influencing the formation of collateral circulation is hypoxia, which induces angiogenesis and arteriogenesis, which in turn cause the formation of new vessels. The aim of this study was to assess the effect of endurance training conducted under normobaric hypoxia in patients after myocardial infarction at the level of exercise tolerance and hemodynamic parameters of the left ventricle. Thirty-five patients aged 43–74 (60.48 ± 4.36) years who underwent angioplasty with stent implantation were examined. The program included 21 training units lasting about 90 min. A statistically significant improvement in exercise tolerance assessed with the cardiopulmonary exercise test (CPET) was observed: test duration (p < 0.001), distance covered (p < 0.001), HRmax (p = 0.039), maximal systolic blood pressure (SBPmax) (p = 0.044), peak minute ventilation (VE) (p = 0.004) and breathing frequency (BF) (p = 0.044). Favorable changes in left ventricular hemodynamic parameters were found for left ventricular end-diastolic dimension LVEDD (p = 0.002), left ventricular end-systolic dimension LVESD (p = 0.015), left ventricular ejection fraction (LVEF) (p = 0.021), lateral e’ (p < 0.001), septal e’ (p = 0.001), and E/A (p = 0.047). Endurance training conducted in hypoxic conditions has a positive effect on exercise tolerance and the hemodynamic indicators of the left ventricle.


Author(s):  
Malgorzata Zalewska-Adamiec ◽  
Jolanta Malyszko ◽  
Ewelina Grodzka ◽  
Lukasz Kuzma ◽  
Slawomir Dobrzycki ◽  
...  

Abstract Background Myocardial infarction with nonobstructive coronary arteries (MINOCA) constitutes about 10% of the cases of acute coronary syndromes (ACS). It is a working diagnosis and requires further diagnostics to determine the cause of ACS. Methods In this study, 178 patients were initially diagnosed with MINOCA over a period of 3 years at the Department of Invasive Cardiology of the University Clinical Hospital in Białystok. The value of estimated glomerular filtration rate (eGFR) was calculated for all patients. The patients were divided into 2 groups depending on the value of eGFR: group 1—53 patients with impaired kidney function (eGFR < 60 mL/min/1.73 m2; 29.8%) and group 2—125 patients with normal kidney function (eGFR ≥ 60 mL/min/1.73 m2; 70.2%). Results In group 1, the mean age of patients was significantly higher than that of group 2 patients (77.40 vs 59.27; p < 0.0001). Group had more women than group 2 (73.58% vs 49.60%; p = 0.003). Group 1 patients had higher incidence rate of arterial hypertension (92.45% vs 60.80%; p < 0.0001) and diabetes (32.08% vs 9.60%; p = 0.0002) and smoked cigarettes (22.64% vs 40.80%; p = 0.020). Group 1 patients had higher incidence rate of pulmonary edema, cardiogenic shock, sudden cardiac arrest (13.21% vs 4.00%; p = 0.025), and pneumonia (22.64% vs 6.40%; p = 0.001). After the 37-month observation, the mortality rate of the patients with MINOCA was 16.85%. Among group two patients, more of them became deceased during hospitalization (7.55% vs 0.80%; p = 0.012), followed by after 1 year (26.42% vs 7.20%; p = 0.0004) and after 3 years (33.96% vs 9.6%; p < 0.0001). Multivariate analysis revealed that the factors increasing the risk of death in MINOCA are as follows: older age, low eGFR, higher creatinine concentration, low left ventricular ejection fraction, and ST elevation in ECG. Conclusion Impaired kidney function is diagnosed in every third patient with MINOCA. Early and late prognosis of patents with MINOCA and renal dysfunction is poor, and their 3-year mortality is comparable to patients with myocardial infarction with significant stenosis of the coronary arteries and impaired kidney function.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
V Marcos Garces ◽  
C Rios-Navarro ◽  
L Hueso ◽  
A Diaz ◽  
C Bonanad ◽  
...  

Abstract Background Angiogenesis participates in re-establishing microcirculation after myocardial infarction (MI). Purpose In this study, we aim to further understand the role of the anti-angiogenic isoform vascular endothelial growth factor (VEGF)-A165b after MI and explore its potential as a co-adjuvant therapy to coronary reperfusion. Methods Two mice MI models were formed: 1) permanent coronary ligation (non-reperfused MI), 2) transient 45-min coronary occlusion followed by reperfusion (reperfused MI); in both models, animals underwent echocardiography before euthanasia at day 21 after MI induction. Serum and myocardial VEGF-A165b levels were determined. In both experimental MI models, functional and structural implication of VEGF-A165b blockade was assessed. In a cohort of 104 ST-segment elevation MI patients, circulating VEGF-A165b levels were correlated with cardiovascular magnetic resonance-derived left ventricular ejection fraction at 6-months and with the occurrence of adverse events (death, heart failure and/or re-infarction). Results In both models, circulating and myocardial VEGF-A165b presence was increased 21 days after MI induction. Serum VEGF-A165b levels inversely correlated with systolic function evaluated by echocardiography. VEGF-A165b blockage increased capillary density, reduced infarct size, and enhanced left ventricular function in reperfused, but not in non-reperfused MI experiments. In patients, higher VEGF-A165b levels correlated with depressed ejection fraction and worse outcomes. Conclusions In experimental and clinical studies, higher serum VEGF-A165b levels associates with a worse systolic function. Its blockage enhances neoangiogenesis, reduces infarct size, and increases ejection fraction in reperfused, but not in non-reperfused MI experiments. Therefore, VEGF-A165b neutralization represents a potential co-adjuvant therapy to coronary reperfusion. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): This study was funded by “Instituto de Salud Carlos III” and “Fondos Europeos de Desarrollo Regional FEDER” (Exp. PIE15/00013, PI17/01836, PI18/00209 and CIBERCV16/11/00486).


2021 ◽  
Author(s):  
Julian Müller ◽  
Michael Behnes ◽  
Tobias Schupp ◽  
Dominik Ellguth ◽  
Gabriel Taton ◽  
...  

AbstractBoth acute myocardial infarction complicated by ventricular tachyarrhythmias (AMI–VTA) and electrical storm (ES) represent life-threatening clinical conditions. However, a direct comparison of both sub-groups regarding prognostic endpoints has never been investigated. All consecutive implantable cardioverter-defibrillator (ICD) recipients were included retrospectively from 2002 to 2016. Patients with ES apart from AMI (ES) were compared to patients with AMI accompanied by ventricular tachyarrhythmias (AMI–VTA). The primary endpoint was all-cause mortality at 3 years, secondary endpoints were in-hospital mortality, rehospitalization rates and major adverse cardiac event (MACE) at 3 years. A total of 198 consecutive ICD recipients were included (AMI–VTA: 56%; ST-segment elevation myocardial infarction (STEMI): 22%; non-ST-segment myocardial infarction (NSTEMI) 78%; ES: 44%). ES patients were older and had higher rates of severely reduced left ventricular ejection fraction (LVEF) < 35%. ES was associated with increased all-cause mortality at 3 years (37% vs. 19%; p = 0.001; hazard ratio [HR] = 2.242; 95% CI 2.291–3.894; p = 0.004) and with increased risk of first cardiac rehospitalization (44% vs. 12%; p = 0.001; HR = 4.694; 95% CI 2.498–8.823; p = 0.001). This worse prognosis of ES compared to AMI–VTA was still evident after multivariable adjustment (long-term all-cause mortality: HR = 2.504; 95% CI 1.093–5.739; p = 0.030; first cardiac rehospitalization: HR = 2.887; 95% CI 1.240–6.720; p = 0.014). In contrast, the rates of MACE (40% vs. 32%; p = 0.326) were comparable in both groups. At long-term follow-up of 3 years, ES was associated with higher rates of all-cause mortality and rehospitalization compared to patients with AMI–VTA.


Cardiology ◽  
2016 ◽  
Vol 135 (4) ◽  
pp. 221-227 ◽  
Author(s):  
Shao-Ling Yang ◽  
Ke-Qiang Tang ◽  
Jun-Jia Tao ◽  
Ai-Hong Wan ◽  
Yan-Duan Lin ◽  
...  

Objectives: We aimed to evaluate whether ultrasound (US) and microbubble-mediated delivery of Cluster of Differentiation 151 (CD151) could enhance the therapeutic effects of CD151 on myocardial infarction (MI). Methods: A rabbit model of MI was established by a modified Fujita method. Then, 50 MI rabbits were randomly divided into 5 groups, including G1 (CD151 plasmid and physiological saline in the presence of US); G2 (CD151 and Sonovue in the presence of US); G3 (CD151 and Sonovue in the absence of US); G4 (Sonovue in the absence of US), and a control group (physiological saline in the absence of US). After 14 days of treatment, the expression of CD151 was detected by Western blot. Besides, vessel density of peri-infarcted myocardium was measured by immunohistochemistry, and cardiac function was analyzed by echocardiography. Results: The rabbit model of MI was established successfully. CD151 injection increased the expression of CD151 and microvessel density in the myocardium of MI rabbits. Heart function was significantly improved by CD151, which exhibited increased left ventricular ejection fraction, left ventricular fractional shortening and a reduced Tei index. Besides, US Sonovue significantly increased the expression efficiency of CD151. Conclusion: US microbubble was an effective vector for CD151 delivery. CD151 might be an effective therapeutic target for MI.


Sign in / Sign up

Export Citation Format

Share Document