Molecular and phenotypic effects of heterozygous, homozygous, and compound heterozygote myosin heavy-chain mutations

2005 ◽  
Vol 288 (3) ◽  
pp. H1097-H1102 ◽  
Author(s):  
Norman R. Alpert ◽  
Saidi A. Mohiddin ◽  
Dorothy Tripodi ◽  
Jacqueline Jacobson-Hatzell ◽  
Kelly Vaughn-Whitley ◽  
...  

Autosomal dominant familial hypertrophic cardiomyopathy (FHC) has variable penetrance and phenotype. Heterozygous mutations in MYH7 encoding β-myosin heavy chain are the most common causes of FHC, and we proposed that “enhanced” mutant actin-myosin function is the causative molecular abnormality. We have studied individuals from families in which members have two, one, or no mutant MYH7 alleles to examine for dose effects. In one family, a member homozygous for Lys207Gln had cardiomyopathy complicated by left ventricular dilatation, systolic impairment, atrial fibrillation, and defibrillator interventions. Only one of five heterozygous relatives had FHC. Leu908Val and Asp906Gly mutations were detected in a second family in which penetrance for Leu908Val heterozygotes was 46% (21/46) and 25% (3/12) for Asp906Gly. Despite the low penetrance, hypertrophy was severe in several heterozygotes. Two individuals with both mutations developed severe FHC. The velocities of actin translocation ( Vactin) by mutant and wild-type (WT) myosins were compared in the in vitro motility assay. Compared with WT/WT, Vactin was 34% faster for WT/D906G and 21% for WT/L908V. Surprisingly Vactin for Leu908Val/Asp906Gly and Lys207Gln/Lys207Gln mutants were similar to WT. The apparent enhancement of mechanical performance with mutant/WT myosin was not observed for mutant/mutant myosin. This suggests that Vactin may be a poor predictor of disease penetrance or severity and that power production may be more appropriate, or that the limited availability of double mutant patients prohibits any definitive conclusions. Finally, severe FHC in heterozygous individuals can occur despite very low penetrance, suggesting these mutations alone are insufficient to cause FHC and that uncharacterized modifying mechanisms exert powerful influences.

1992 ◽  
Vol 263 (2) ◽  
pp. H464-H472 ◽  
Author(s):  
H. Yamashita ◽  
S. Sugiura ◽  
T. Serizawa ◽  
T. Sugimoto ◽  
M. Iizuka ◽  
...  

To investigate the relationship between the mechanical and biochemical properties of cardiac myosin, the sliding velocity of isolated cardiac myosin obtained from both euthyroid and hyperthyroid rabbits on actin cables was measured with an in vitro motility assay system. Ten rabbits (T) were treated with L-thyroxine to induce hyperthyroidism, and eight nontreated animals (N) were used as controls. Myosin was purified from the left ventricles of anesthetized animals. Myosin isozyme content was analyzed by the pyrophosphate gel electrophoresis method, and myosin adenosinetriphosphatase (ATPase) activity was determined on the same sample. Long well-organized actin cables of green algae, Nitellopsis, were used in the in vitro motility assay. Small latex beads were coated with purified cardiac myosin and introduced onto the Nitellopsis actin cables. Active unidirectional movement of the beads on the actin cables was observed under a photomicroscope, and the velocity was measured. The velocity was dependent on ATP concentrations, and the optimal pH for bead movement was approximately 7.0-7.5. The mean velocity was higher in T than in N (0.66 +/- 0.12 vs. 0.32 +/- 0.09 micron/s, P less than 0.01). Both Ca(2+)-activated ATPase activity and the percentage of alpha-myosin heavy chain were also higher in T than in N (0.691 +/- 0.072 vs. 0.335 +/- 0.072 microM Pi.mg-1.min-1, P less than 0.01, and 79 +/- 12 vs. 26 +/- 7%, P less than 0.01, respectively). The velocity of myosin closely correlated with both Ca(+2)-activated myosin ATPase activity (r = 0.87, P less than 0.01) and the percentage of alpha-myosin heavy chain (r = 0.87, P less than 0.01).


1994 ◽  
Vol 72 (11) ◽  
pp. 1351-1360 ◽  
Author(s):  
Christine A. Kelley ◽  
Robert S. Adelstein

In this paper we review some of our recent work on the structural and biochemical characterization of isoforms of the heavy chain of vertebrate smooth muscle myosin II. There exist both amino-terminal and carboxyl-terminal alternatively spliced isoforms of the smooth muscle myosin heavy chain (MHC). mRNA splicing at the 3′ end generates two MHCs, which differ in length and amino acid sequence in the carboxyl terminus. We will refer to the longer, 204-kDa isoform as MHC204 and the shorter, 200-kDa isoform as MHC200. We found that MHC204, but not MHC200, can be phosphorylated by casein kinase II on a serine near the carboxyl terminus, suggesting that these isoforms may be differentially regulated. The physiological significance of this phosphorylation is not known. However, as demonstrated in this paper, phosphorylation does not appear to affect filament formation, velocity of movement of actin filaments by myosin in an in vitro motility assay, actin-activated Mg2+ ATPase activity, or myosin conformation. Our results also show that MHC204 and MHC200 form homodimers, but not heterodimers. Purified MHC204 and MHC200 homodimers are not enzymatically different, at least as measured using an in vitro motility assay. The amino-terminal spliced MHC204 and MHC200 isoforms are the result of the specific insertion or deletion of seven amino acids near the ATP-binding region in the myosin head. We refer to these isoforms as inserted (MHC204-I; MHC200-I) or noninserted (MHC204; MHC200), respectively. In contrast to the carboxyl-terminal spliced isoforms, the amino-terminal spliced inserted and noninserted myosin heavy chain isoforms are enzymatically different. The inserted isoform, which is expressed in intestinal, phasic-type smooth muscle, has a higher actin-activated Mg ATPase activity and moves actin filaments at a greater velocity in an in vitro motility assay than the noninserted MHC isoform, which is expressed in tonic-type vascular smooth muscle. The results presented in this review suggest that the alternative splicing of smooth muscle mRNA results in at least four different isoforms of the myosin heavy chain molecule. The potential relevance of these molecular isoforms to smooth muscle function is discussed.Key words: myosin, heavy chain isoforms.


2014 ◽  
Vol 117 (12) ◽  
pp. 1471-1477 ◽  
Author(s):  
Gerrie P. Farman ◽  
Priya Muthu ◽  
Katarzyna Kazmierczak ◽  
Danuta Szczesna-Cordary ◽  
Jeffrey R. Moore

Familial hypertrophic cardiomyopathy (HCM) is associated with mutations in sarcomeric proteins, including the myosin regulatory light chain (RLC). Here we studied the impact of three HCM mutations located in the NH2 terminus of the RLC on the molecular mechanism of β-myosin heavy chain (MHC) cross-bridge mechanics using the in vitro motility assay. To generate mutant β-myosin, native RLC was depleted from porcine cardiac MHC and reconstituted with mutant (A13T, F18L, and E22K) or wild-type (WT) human cardiac RLC. We characterized the mutant myosin force and motion generation capability in the presence of a frictional load. Compared with WT, all three mutants exhibited reductions in maximal actin filament velocity when tested under low or no frictional load. The actin-activated ATPase showed no significant difference between WT and HCM-mutant-reconstituted myosins. The decrease in velocity has been attributed to a significantly increased duty cycle, as was measured by the dependence of actin sliding velocity on myosin surface density, for all three mutant myosins. These results demonstrate a mutation-induced alteration in acto-myosin interactions that may contribute to the pathogenesis of HCM.


2001 ◽  
Vol 280 (2) ◽  
pp. C309-C316 ◽  
Author(s):  
Thomas J. Eddinger ◽  
Daniel P. Meer

Isolated single smooth muscle cells (SMCs) from different regions of the rabbit stomach were used to determine a possible correlation between unloaded shortening velocity and smooth muscle (SM) myosin heavy chain (MHC) S1 head isoform composition (SMA, no head insert; SMB, with head insert). α-Toxin-permeabilized isolated single cells were maximally activated to measure unloaded shortening velocity and subsequently used in an RT-PCR reaction to determine the SMA/SMB content of the same cell. SM MHC SMA and SMB isoforms are uniquely distributed in the stomach with cells from the fundic region expressing little SMB (38.1 ± 7.3% SMB; n = 16); cells from the antrum express primarily SMB (94.9 ± 1.0% SMB; n = 16). Mean fundic cell unloaded shortening velocity was 0.014 ± 0.002 cell lengths/s compared with 0.036 ± 0.002 for the antrum cells. Unloaded shortening velocity in these cells was significantly correlated with their percent SMB expression ( r 2 = 0.58). Resting cell length does not correlate with the percent SMB expression ( n = 32 cells). Previously published assays of purified or expressed SMA and SMB heavy meromyosin show a twofold difference in actin filament sliding speed in in vitro motility assays. Extrapolation of our data to 0–100% SMB would give a 10-fold range of shortening velocity, which is closer to the ∼20-fold range reported from various SM tissues. This suggests that mechanisms in addition to the MHC S1 head isoforms regulate shortening velocity.


1996 ◽  
Vol 134 (3) ◽  
pp. 675-687 ◽  
Author(s):  
C A Kelley ◽  
J R Sellers ◽  
D L Gard ◽  
D Bui ◽  
R S Adelstein ◽  
...  

There are two isoforms of the vertebrate nonmuscle myosin heavy chain, MHC-A and MHC-B, that are encoded by two separate genes. We compared the enzymatic activities as well as the subcellular localizations of these isoforms in Xenopus cells. MHC-A and MHC-B were purified from cells by immunoprecipitation with isoform-specific peptide antibodies followed by elution with their cognate peptides. Using an in vitro motility assay, we found that the velocity of movement of actin filaments by MHC-A was 3.3-fold faster than that by MHC-B. Likewise, the Vmax of the actin-activated Mg(2+)-ATPase activity of MHC-A was 2.6-fold greater than that of MHC-B. Immunofluorescence microscopy demonstrated distinct localizations for MHC-A and MHC-B. In interphase cells, MHC-B was present in the cell cortex and diffusely arranged in the cytoplasm. In highly polarized, rapidly migrating interphase cells, the lamellipodium was dramatically enriched for MHC-B suggesting a possible involvement of MHC-B based contractions in leading edge extension and/or retraction. In contrast, MHC-A was absent from the cell periphery and was arranged in a fibrillar staining pattern in the cytoplasm. The two myosin heavy chain isoforms also had distinct localizations throughout mitosis. During prophase, the MHC-B redistributed to the nuclear membrane, and then resumed its interphase localization by metaphase. MHC-A, while diffuse within the cytoplasm at all stages of mitosis, also localized to the mitotic spindle in two different cultured cell lines as well as in Xenopus blastomeres. During telophase both isoforms colocalized to the contractile ring. The different subcellular localizations of MHC-A and MHC-B, together with the data demonstrating that these myosins have markedly different enzymatic activities, strongly suggests that they have different functions.


2021 ◽  
Vol 22 (7) ◽  
pp. 3466
Author(s):  
Svetlana V. Klinova ◽  
Boris A. Katsnelson ◽  
Ilzira A. Minigalieva ◽  
Oksana P. Gerzen ◽  
Alexander A. Balakin ◽  
...  

Subchronic intoxication was induced in outbred male rats by repeated intraperitoneal injections with lead oxide (PbO) and/or cadmium oxide (CdO) nanoparticles (NPs) 3 times a week during 6 weeks for the purpose of examining its effects on the contractile characteristics of isolated right ventricle trabeculae and papillary muscles in isometric and afterload contractions. Isolated and combined intoxication with these NPs was observed to reduce the mechanical work produced by both types of myocardial preparation. Using the in vitro motility assay, we showed that the sliding velocity of regulated thin filaments drops under both isolated and combined intoxication with CdO–NP and PbO–NP. These results correlate with a shift in the expression of myosin heavy chain (MHC) isoforms towards slowly cycling β–MHC. The type of CdO–NP + PbO–NP combined cardiotoxicity depends on the effect of the toxic impact, the extent of this effect, the ratio of toxicant doses, and the degree of stretching of cardiomyocytes and muscle type studied. Some indices of combined Pb–NP and CdO–NP cardiotoxicity and general toxicity (genotoxicity included) became fully or partly normalized if intoxication developed against background administration of a bioprotective complex.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Fang Wang ◽  
Nicolas M. Brunet ◽  
Justin R. Grubich ◽  
Ewa A. Bienkiewicz ◽  
Thomas M. Asbury ◽  
...  

Familial hypertrophic cardiomyopathy (FHC) is a disease of cardiac sarcomeres. To identify molecular mechanisms underlying FHC pathology, functional and structural differences in three FHC-related mutations in recombinantα-Tm (V95A, D175N, and E180G) were characterized using both conventional and modified in vitro motility assays and circular dichroism spectroscopy. Mutant Tm's exhibited reducedα-helical structure and increased unordered structure. When thin filaments were fully occupied by regulatory proteins, little or no motion was detected at pCa 9, and maximum speed (pCa 5) was similar for all tropomyosins. Ca2+-responsiveness of filament sliding speed was increased either by increasedpCa50(V95A), reduced cooperativityn(D175N), or both (E180G). When temperature was increased, thin filaments with E180G exhibited dysregulation at temperatures ~10°C lower, and much closer to body temperature, than WT. When HMM density was reduced, thin filaments with D175N required fewer motors to initiate sliding or achieve maximum sliding speed.


Sign in / Sign up

Export Citation Format

Share Document