Hypertrophic cardiomyopathy-related β-myosin mutations cause highly variable calcium sensitivity with functional imbalances among individual muscle cells

2005 ◽  
Vol 288 (3) ◽  
pp. H1242-H1251 ◽  
Author(s):  
Sebastian E. Kirschner ◽  
Edgar Becker ◽  
Massimo Antognozzi ◽  
Hans-Peter Kubis ◽  
Antonio Francino ◽  
...  

Disease-causing mutations in cardiac myosin heavy chain (β-MHC) are identified in about one-third of families with hypertrophic cardiomyopathy (HCM). The effect of myosin mutations on calcium sensitivity of the myofilaments, however, is largely unknown. Because normal and mutant cardiac MHC are also expressed in slow-twitch skeletal muscle, which is more easily accessible and less subject to the adaptive responses seen in myocardium, we compared the calcium sensitivity (pCa50) and the steepness of force-pCa relations (cooperativity) of single soleus muscle fibers from healthy individuals and from HCM patients of three families with selected myosin mutations. Fibers with the Arg723Gly and Arg719Trp mutations showed a decrease in mean pCa50, whereas those with the Ile736Thr mutation showed slightly increased mean pCa50 with higher active forces at low calcium concentrations and residual active force even under relaxing conditions. In addition, there was a marked variability in pCa50 between individual fibers carrying the same mutation ranging from an almost normal response to highly significant differences that were not observed in controls. While changes in mean pCa50 may suggest specific pharmacological treatment (e.g., calcium antagonists), the observed large functional variability among individual muscle cells might negate such selective treatment. More importantly, the variability in pCa50 from fiber to fiber is likely to cause imbalances in force generation and be the primary cause for contractile dysfunction and development of disarray in the myocardium.

2018 ◽  
Vol 475 (24) ◽  
pp. 3933-3948 ◽  
Author(s):  
Sahar I. Da'as ◽  
Khalid Fakhro ◽  
Angelos Thanassoulas ◽  
Navaneethakrishnan Krishnamoorthy ◽  
Alaaeldin Saleh ◽  
...  

The most common inherited cardiac disorder, hypertrophic cardiomyopathy (HCM), is characterized by thickening of heart muscle, for which genetic mutations in cardiac myosin-binding protein C3 (c-MYBPC3) gene, is the leading cause. Notably, patients with HCM display a heterogeneous clinical presentation, onset and prognosis. Thus, delineating the molecular mechanisms that explain how disparate c-MYBPC3 variants lead to HCM is essential for correlating the impact of specific genotypes on clinical severity. Herein, five c-MYBPC3 missense variants clinically associated with HCM were investigated; namely V1 (R177H), V2 (A216T), V3 (E258K), V4 (E441K) and double mutation V5 (V3 + V4), all located within the C1 and C2 domains of MyBP-C, a region known to interact with sarcomeric protein, actin. Injection of the variant complementary RNAs in zebrafish embryos was observed to recapitulate phenotypic aspects of HCM in patients. Interestingly, V3- and V5-cRNA injection produced the most severe zebrafish cardiac phenotype, exhibiting increased diastolic/systolic myocardial thickness and significantly reduced heart rate compared with control zebrafish. Molecular analysis of recombinant C0–C2 protein fragments revealed that c-MYBPC3 variants alter the C0–C2 domain secondary structure, thermodynamic stability and importantly, result in a reduced binding affinity to cardiac actin. V5 (double mutant), displayed the greatest protein instability with concomitant loss of actin-binding function. Our study provides specific mechanistic insight into how c-MYBPC3 pathogenic variants alter both functional and structural characteristics of C0–C2 domains leading to impaired actin interaction and reduced contractility, which may provide a basis for elucidating the disease mechanism in HCM patients with c-MYBPC3 mutations.


Circulation ◽  
1999 ◽  
Vol 100 (4) ◽  
pp. 446-449 ◽  
Author(s):  
Yoshinori L. Doi ◽  
Hiroaki Kitaoka ◽  
Nobuhiko Hitomi ◽  
Manatsu Satoh ◽  
Akinori Kimura

2002 ◽  
Vol 49 (4) ◽  
pp. 789-804 ◽  
Author(s):  
Maria Jolanta Redowicz

This article summarizes current knowledge on the genetics and possible molecular mechanisms of Human pathologies resulted from mutations within the genes encoding several myosin isoforms. Mutations within the genes encoding some myosin isoforms have been found to be responsible for blindness (myosins III and VIIA), deafness (myosins I, IIA, IIIA, VI, VIIA and XV) and familial hypertrophic cardiomyopathy (beta cardiac myosin heavy chain and both the regulatory and essential light chains). Myosin III localizes predominantly to photoreceptor cells and is proved to be engaged in the vision process in Drosophila. In the inner ear, myosin I is postulated to play a role as an adaptive motor in the tip links of stereocilia of hair cells, myosin IIA seems to be responsible for stabilizing the contacts between adjacent inner ear hair cells, myosin VI plays a role as an intracellular motor transporting membrane structures within the hair cells while myosin VIIA most probably participates in forming links between neighbouring stereocilia and myosin XV probably stabilizes the stereocilia structure. About 30% of patients with familial hypertrophic cardiomyopathy have mutations within the genes encoding the beta cardiac myosin heavy chain and both light chains that are grouped within the regions of myosin head crucial for its functions. The alterations lead to the destabilization of sarcomeres and to a decrease of the myosin ATPase activity and its ability to move actin filaments.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
William A Kronert ◽  
Kaylyn M Bell ◽  
Meera C Viswanathan ◽  
Girish C Melkani ◽  
Adriana S Trujillo ◽  
...  

K146N is a dominant mutation in human β-cardiac myosin heavy chain, which causes hypertrophic cardiomyopathy. We examined how Drosophila muscle responds to this mutation and integratively analyzed the biochemical, physiological and mechanical foundations of the disease. ATPase assays, actin motility, and indirect flight muscle mechanics suggest at least two rate constants of the cross-bridge cycle are altered by the mutation: increased myosin attachment to actin and decreased detachment, yielding prolonged binding. This increases isometric force generation, but also resistive force and work absorption during cyclical contractions, resulting in decreased work, power output, flight ability and degeneration of flight muscle sarcomere morphology. Consistent with prolonged cross-bridge binding serving as the mechanistic basis of the disease and with human phenotypes, 146N/+ hearts are hypercontractile with increased tension generation periods, decreased diastolic/systolic diameters and myofibrillar disarray. This suggests that screening mutated Drosophila hearts could rapidly identify hypertrophic cardiomyopathy alleles and treatments.


2010 ◽  
Vol 56 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Takayoshi Hirota ◽  
Toru Kubo ◽  
Hiroaki Kitaoka ◽  
Tomoyuki Hamada ◽  
Yuichi Baba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document