scholarly journals Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction

Author(s):  
Yedan Liu ◽  
Huawei Zhang ◽  
Shaoxun Wang ◽  
Ya Guo ◽  
Xing Fang ◽  
...  

Diabetes mellitus (DM) is one of the primary pathological factors that contributes to aging-related cognitive impairments, but the underlying mechanisms remain unclear. We recently reported that old DM rats exhibited impaired myogenic responses of the cerebral arteries and arterioles, poor cerebral blood flow autoregulation, enhanced blood-brain barrier (BBB) leakage, and cognitive impairments. These changes were associated with diminished vascular smooth muscle cell contractile capability linked to elevated reactive oxygen species (ROS) and reduced ATP production. The present study, using a non-obese T2DN DM rat, isolated parenchymal arterioles (PAs), and cultured cerebral microvascular pericytes, examined whether cerebrovascular pericyte in DM is damaged and whether pericyte dysfunction may play a role in the regulation of cerebral hemodynamics and BBB integrity. We found that ROS and mitochondrial superoxide production were elevated in PAs isolated from old DM rats and in high glucose (HG)-treated alpha-smooth muscle actin positive pericytes. HG-treated pericytes displayed decreased contractile capability in association with diminished mitochondrial respiration and ATP production. Additionally, the expression of advanced glycation end products, transforming growth factor-beta, vascular endothelial growth factor, and fibronectin were enhanced, but claudin 5 and integrin β1 was reduced in the brain of old DM rats and HG-treated pericytes. Further, endothelial tight junction and pericyte coverage on microvessels were reduced in the cortex of old DM rats. These results demonstrate our previous findings that the impaired cerebral hemodynamics and BBB leakage and cognitive impairments in the same old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.

1994 ◽  
Vol 42 (8) ◽  
pp. 1061-1070 ◽  
Author(s):  
T D Perdue ◽  
A R Brody

We are studying the development of fibrogenic lesions in the lungs of rats exposed briefly to an aerosol of chrysotile asbestos fibers. This model of asbestosis has enabled us to establish very early cellular events at the specific locations where interstitial fibrosis will develop. These sites, the first alveolar duct bifurcations, are where the fibers are initially deposited and where macrophages first accumulate. In the studies presented here, we used immunohistochemical techniques to show that these macrophages exhibit strong localization of transforming growth factor-beta. In the adjacent developing fibrogenic lesions a clear increase in fibronectin staining was demonstrated and morphological analysis indicated a significant increase in amounts of smooth muscle actin. Such studies are essential in furthering our understanding of the distribution of potential mediators of the fibrogenic process and the cellular responses they elicit during the pathogenesis of disease.


1995 ◽  
Vol 5 (8) ◽  
pp. 1610-1617
Author(s):  
C W Yang ◽  
M Hattori ◽  
H Vlassara ◽  
C J He ◽  
M A Carome ◽  
...  

Nonobese diabetic (NOD) mice spontaneously develop immune-mediated insulin-dependent diabetes mellitus and nephropathy, providing an opportunity to study the early molecular events in a model of diabetic glomerulosclerosis. The expression of several genes coding for growth factors and extracellular matrix was examined in microdissected glomeruli, by the use of reverse transcription-competitive polymerase chain reaction, in diabetic NOD mice (mean duration of diabetes, 28.5 +/- 7 days) and age-matched nondiabetic NOD mice with normal glucose tolerance. The levels of mRNA coding for transforming growth factor-beta 1, tenascin, and laminin B1 increased 1.9-, 2.0-, and 1.7-fold, respectively, whereas platelet-derived growth factor (PDGF)-B, alpha 1(IV) collagen, 72-kd collagenase, alpha-smooth muscle actin, and beta-actin mRNA remained stable in the diabetic mice. The kidney advanced glycosylation end-products levels increased 2.1-fold in the diabetic mice, and the diabetic glomeruli showed an accumulation of tenascin and laminin but not of type IV collagen by immunofluorescence microscopy. There was no increase in cell number per glomerulus after the onset of diabetes, a finding consistent with stable PDGF-B and alpha-smooth muscle actin mRNA levels. These findings provide evidence that increased glomerular transforming growth factor-beta 1, but not PDGF-B, mRNA is associated with the up-regulation of tenascin and laminin expression after advanced glycosylation endproduct accumulation, early after the onset of diabetes.


1992 ◽  
Vol 103 (2) ◽  
pp. 521-529 ◽  
Author(s):  
E. Arciniegas ◽  
A.B. Sutton ◽  
T.D. Allen ◽  
A.M. Schor

Alpha-smooth muscle actin is considered a reliable marker for distinguishing between arterial smooth muscle and endothelial cells. Several authors have reported heterogeneity in the expression of this actin isoform in atherosclerotic lesions. Such heterogeneity appears to result from the presence of different smooth muscle cell phenotypes (contractile and synthetic) in these lesions. In the present study, we show that bovine aortic endothelial cells, which are characterised by the presence of Factor VIII-related antigen (FVIII) and by the absence of alpha-smooth muscle actin (alpha-SM actin) may be induced to express the latter when exposed to TGF-beta 1. FVIII was detected by immunofluorescence, alpha-SM actin was detected by immunofluorescence and immunoblotting. The number of cells expressing alpha-SM actin increased with time of incubation with TGF-beta 1, and this increase occurred concomitantly with a decrease in the expression of FVIII. Double immunofluorescence demonstrated the presence of cells that expressed both FVIII and alpha-SM actin after 5 days of incubation with TGF-beta 1. With longer incubation times (10-20 days) the loss of FVIII expression was complete and over 90% of the cells expressed alpha-SM actin. Ultrastructurally, cells in control cultures showed the typical features of endothelial cells. In the TGF-beta 1-treated cultures, cells which appeared indistinguishable from contractile and synthetic smooth muscle cells were observed. Withdrawal of TGF-beta 1 after 10 days incubation resulted in the re-appearance of polygonal cells which were FVIII-positive and alpha-SM actin-negative.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 14 (4) ◽  
pp. 1841-1862
Author(s):  
Sally A El Awdan ◽  
Gihan F. Asaad

Liver fibrosis is considered: “a pathological repairing process in liver injuries leading to extracellular cell matrix (ECM) accumulation evidencing chronic liver diseases”. Chronic viral hepatitis, alcohol consumption, autoimmune diseases as well as non-alcoholic steatohepatitis are from the main causes of liver fibrosis (Lee et al., 2015; Mieli-Vergani et al., 2018). Hepatic stellate cells (HSCs) exist in the sinus space next to the hepatic epithelial cells as well as endothelial cells (Yin et al., 2013). Normally, HSCs are quiescent and mainly participate in fat storage and in the metabolism of vitamin A. HSCs are produced during liver injury and then transformed into myofibroblasts. The activated HSCs resulted in a sequence of events considered as marks fibrosis. The activation of HSCs mostly express alpha smooth muscle actin (α-SMA). Moreover, ECM is synthesized and secreted by HSCs that affects markedly the structure and function of the liver tissue leading to fibrosis (Tsuchida et al., 2017; Han et al., 2020). Hence, activated HSCs are attracting attention as potential targets in liver fibrosis. Many signaling molecules are involved in HSCs activation first and foremost, platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-β) (Tsuchida et al., 2017; Wang et al., 2020c) as interfering the PDGF or TGF-β signaling pathways is a growing field for liver fibrosis treatment.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1628
Author(s):  
Kaj E. C. Blokland ◽  
Habibie Habibie ◽  
Theo Borghuis ◽  
Greta J. Teitsma ◽  
Michael Schuliga ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. Age is a major risk factor, and both alveolar epithelial cells and lung fibroblasts in this disease exhibit features of cellular senescence, a hallmark of ageing. Accumulation of fibrotic extracellular matrix (ECM) is a core feature of IPF and is likely to affect cell function. We hypothesize that aberrant ECM deposition augments fibroblast senescence, creating a perpetuating cycle favouring disease progression. In this study, primary lung fibroblasts were cultured on control and IPF-derived ECM from fibroblasts pretreated with or without profibrotic and prosenescent stimuli, and markers of senescence, fibrosis-associated gene expression and secretion of cytokines were measured. Untreated ECM derived from control or IPF fibroblasts had no effect on the main marker of senescence p16Ink4a and p21Waf1/Cip1. However, the expression of alpha smooth muscle actin (ACTA2) and proteoglycan decorin (DCN) increased in response to IPF-derived ECM. Production of the proinflammatory cytokines C-X-C Motif Chemokine Ligand 8 (CXCL8) by lung fibroblasts was upregulated in response to senescent and profibrotic-derived ECM. Finally, the profibrotic cytokines transforming growth factor β1 (TGF-β1) and connective tissue growth factor (CTGF) were upregulated in response to both senescent- and profibrotic-derived ECM. In summary, ECM deposited by IPF fibroblasts does not induce cellular senescence, while there is upregulation of proinflammatory and profibrotic cytokines and differentiation into a myofibroblast phenotype in response to senescent- and profibrotic-derived ECM, which may contribute to progression of fibrosis in IPF.


Sign in / Sign up

Export Citation Format

Share Document