Bax translocates from cytosol to mitochondria in cardiac cells during apoptosis: development of a GFP-Bax-stable H9c2 cell line for apoptosis analysis

2005 ◽  
Vol 289 (1) ◽  
pp. H477-H487 ◽  
Author(s):  
Qi Hou ◽  
Yi-Te Hsu

The proapoptotic protein Bax plays an important role in cardiomyocytic cell death. Ablation of this protein has been shown to diminish cardiac damage in Bax-knockout mice during ischemia-reperfusion. Presently, studies of Bax-mediated cardiac cell death examined primarily the expression levels of Bax and its prosurvival factor Bcl-2 rather than the localization of this protein, which dictates its function. Using immunofluorescence labeling, we have shown that in neonatal rat cardiomyocytes and in H9c2 cardiomyoblasts, Bax translocates from cytosol to mitochondria upon the induction of apoptosis by hypoxia-reoxygenation-serum withdrawal and by the presence of the free-radical inducer menadione. Also, we found that Bax translocation to mitochondria was associated with the exposure of an NH2-terminal epitope, and that this translocation could be partially blocked by the prosurvival factors Bcl-2 and Bcl-XL. To visualize the translocation of Bax in living cells, we have developed an H9c2 cell line that stably expresses green fluorescent protein (GFP)-tagged Bax. This cell line has GFP-Bax localized primarily in the cytosol in the absence of apoptotic inducers. Upon induction of apoptosis by a number of stimuli, including menadione, staurosporine, sodium nitroprusside, and hypoxia-reoxygenation-serum withdrawal, we could observe the translocation of Bax from cytosol to mitochondria. This translocation was not affected by retinoic acid-induced differentiation of H9c2 cells. Additionally, this translocation was associated with loss of mitochondrial membrane potential, release of cytochrome c, and fragmentation of nuclei. Finally, using a tetramethylrhodamine-based dye, we have shown that a rapid screening process based on the loss of mitochondrial membrane potential could be developed to monitor GFP-Bax translocation to mitochondria. Overall, the GFP-Bax-stable H9c2 cell line that we have developed represents a unique tool for examining Bax-mediated apoptosis, and it could be of great importance in screening therapeutic compounds that could block Bax translocation to mitochondria to attenuate apoptosis.

Author(s):  
Vu Thi Thu ◽  
Ngo Thi Hai Yen

This study was conducted to evaluate the protective effect of Naringin (NAR) on H9C2 cardiomyocytes in hypoxia/reoxygenation (HR) injury in vitro induced by the hypoxia chamber. Methods: H9C2 cells were grown under normal (control) and HR conditions. The viability, cardiolipin content and mitochondrial membrane potential of H9C2 cells in experimental groups were analyzed by using suitable kits. Results: The obtained results showed that the addition of Naringin (16÷160 µM) significantly increased the survival rate of H9C2 cells under HR conditions. In particular, NAR had the highest efficiency in preserving mitochondrial function at concentrations of 80 µM and 160 µM. In HR-exposed H9C2 cell group, the cardiolipin content and mitochondrial membrane potential values of H9C2 cells were decreased sharply with that of control (71,64±1,37% and 68,12±2,78%, p<0,05). Interestingly, mitochondrial cardiolipin contents were signigicantly increased in H9C2 cells post-hypoxic treated wtih NAR at dose of 80 µM 160 µM to 87,76±1,89% and 81,09±1,21%. Additionally, post-hypoxic supplementation of NAR at concentration of 80 µM and 160 µM effectively increased mitochondrial membrane potential values. Conclusion: The obtained results are preliminary data on the effects of NAR in protecting mitochondrial-targeted cardiomyocytes against HR injury.


2018 ◽  
Vol 18 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Zahra Shahsavari ◽  
Fatemeh Karami-Tehrani ◽  
Siamak Salami

Background: Recognition of a new therapeutic agent may activate an alternative programmed cell death for the treatment of breast cancer. Objective: Here, it has been tried to evaluate the effects of Shikonin, a naphthoquinone derivative of Lithospermum erythrorhizon, on the induction of necroptosis and apoptosis mediated by RIPK1-RIPK3 in the ER+ breast cancer cell line, MCF-7. Methods: In the current study, cell death modalities, cell cycle patterns, RIPK1 and RIPK3 expressions, caspase-3 and caspase-8 activities, reactive oxygen species and mitochondrial membrane potential have been evaluated in the Shikonin-treated MCF-7 cells. Results: Necroptosis and apoptosis have been occurred by Shikonin, with a significant increase in RIPK1 and RIPK3 expressions, although necroptosis was the major rout in MCF-7 cells. Shikonin significantly increased the percentage of the cells in sub-G1 and also those in the later stages of cell cycle, which represents an increase in necroptosis and apoptosis. Under caspase inhibition by Z-VAD-FMK, Shikonin has stimulated necroptosis, which could be arrested by Nec-1. An increase in ROS levels and a decrease in the mitochondrial membrane potential have also been observed. Conclusion: On the basis of present findings, Shikonin has been suggested as a good candidate for the induction of cell death in ER+ breast cancer, although further investigations, experimental and clinical, are required.


Biomedicines ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 106
Author(s):  
Nidal Zeineh ◽  
Nunzio Denora ◽  
Valentino Laquintana ◽  
Massimo Franco ◽  
Abraham Weizman ◽  
...  

The 18 kDa translocator protein (TSPO) plays an important role in apoptotic cell death, including apoptosis induced by the hypoxia mimicking agent cobalt chloride (CoCl2). In this study, the protective effects of a high (CB86; Ki = 1.6 nM) and a low (CB204; Ki = 117.7 nM) affinity TSPO ligands were investigated in H1299 lung cancer cell line exposed to CoCl2. The lung cell line H1299 was chosen in the present study since they express TSPO and able to undergo programmed cell death. The examined cell death markers included: ATP synthase reversal, reactive oxygen species (ROS) generation, mitochondrial membrane potential (Δψm) depolarization, cellular toxicity, and cellular viability. Pretreatment of the cells with the low affinity ligand CB204 at a concentration of 100 µM suppressed significantly (p < 0.05 for all) CoCl2-induced cellular cytotoxicity (100%), ATP synthase reversal (67%), ROS generation (82%), Δψm depolarization (100%), reduction in cellular density (97%), and also increased cell viability (85%). Furthermore, the low affinity TSPO ligand CB204, was harmless when given by itself at 100 µM. In contrast, the high affinity ligand (CB86) was significantly effective only in the prevention of CoCl2–induced ROS generation (39%, p < 0.001), and showed significant cytotoxic effects when given alone at 100 µM, as reflected in alterations in ADP/ATP ratio, oxidative stress, mitochondrial membrane potential depolarization and cell death. It appears that similar to previous studies on brain-derived cells, the relatively low affinity for the TSPO target enhances the potency of TSPO ligands in the protection from hypoxic cell death. Moreover, the high affinity TSPO ligand CB86, but not the low affinity ligand CB204, was lethal to the lung cells at high concentration (100 µM). The low affinity TSPO ligand CB204 may be a candidate for the treatment of pulmonary diseases related to hypoxia, such as pulmonary ischemia and chronic obstructive pulmonary disease COPD.


2014 ◽  
Vol 306 (4) ◽  
pp. C334-C342 ◽  
Author(s):  
Eiji Takahashi ◽  
Michihiko Sato

To elucidate how tumor cells produce energy in oxygen-depleted microenvironments, we studied the possibility of mitochondrial electron transport without oxygen. We produced well-controlled oxygen gradients (ΔO2) in monolayer-cultured cells. We then visualized oxygen levels and mitochondrial membrane potential (ΔΦm) in individual cells by using the red shift of green fluorescent protein (GFP) fluorescence and a cationic fluorescent dye, respectively. In this two-dimensional tissue model, ΔΦm was abolished in cells >500 μm from the oxygen source [the anoxic front (AF)], indicating limitations in diffusional oxygen delivery. This result perfectly matched GFP-determined ΔO2. In cells pretreated with dimethyloxaloylglycine (DMOG), a prolyl hydroxylase domain-containing protein (PHD) inhibitor, the AF was expanded to 1,500–2,000 μm from the source. In these cells, tissue ΔO2 was substantially decreased, indicating that PHD pathway activation suppressed mitochondrial respiration. The expansion of the AF and the reduction of ΔO2 were much more prominent in a cancer cell line (Hep3B) than in the equivalent fibroblast-like cell line (COS-7). Hence, the results indicate that PHD pathway-activated cells can sustain ΔΦm, despite significantly decreased electron flux to complex IV. Complex II inhibition abolished the effect of DMOG in expanding the AF, although tissue ΔO2 remained shallow. Separate experiments demonstrated that complex II plays a substantial role in sustaining ΔΦm in DMOG-pretreated Hep3B cells with complex III inhibition. From these results, we conclude that PHD pathway activation can sustain ΔΦm in an otherwise anoxic microenvironment by decreasing tissue ΔO2 while activating oxygen-independent electron transport in mitochondria.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Toshitaka Yajima ◽  
Stanley Park ◽  
Hanbing Zhou ◽  
Michinari Nakamura ◽  
Mitsuyo Machida ◽  
...  

MAVS is a mitochondrial outer membrane protein that activates innate antiviral signaling by recognizing cytosolic viral RNAs and DNAs. While the discovery of MAVS is the first molecular evidence that links mitochondria to innate immune mechanisms, it is still unclear whether MAVS affects mitochondrial cell death as a member of caspase activation and recruitment domain (CARD)-containing proteins. We found that MAVS interacts with Bax through CARD by Yeast two-hybrid and a series of immunoprecipitation (IP) assay, which led us to hypothesize that MAVS functions not only in the innate antiviral mechanisms but also in the mitochondrial cell death pathway. Methods: 1) We examined molecular interaction between MAVS and Bax under oxidative stress by IP using isolated myocytes with H2O2 stimulation and the heart post ischemia-reperfusion (I/R). 2) We evaluated the effect of MAVS on mitochondrial membrane potential and apoptosis under H2O2 stimulation using isolated myocytes with adenoviral MAVS knockdown. 3) We investigated the impact of MAVS on %myocardial infarction (%MI) post I/R using cardiac-specific MAVS knockout (cKO) and transgenic (cTg) mice which we have originally generated. 4) We examined the effect of MAVS on recombinant Bax (rBax)-mediated cytochrome c release using isolated mitochondria from wild type (WT) and MAVS KO mice. Results: 1) The amount of Bax pulled down with MAVS was significantly increased in isolated myocytes with 0.2 mM H2O2 compared to those without stimulation (mean±SD; 1.808±0.14, n=5, p<0.001) and in the heart post I/R compared to sham (2.2±1.19, n=3, p=0.0081). 2) Myocytes with MAVS knockdown showed clear abnormalities in mitochondrial membrane potential and caspace-3 cleavage with 0.2 mM H2O2 compared to control cardiomyocytes. 3) MAVS cKO had significantly larger %MI than WT (81.9 ± 5.8% vs. 42.6 ± 13.6%, n=8, p=0.0008). In contrast, MAVS cTg had significantly smaller %MI that WT (30.0 ± 4.8% vs. 49.2 ± 4.8%, n=10, p=0.0113). 4) Mitochondria from MAVS KO exhibited cytochrome c release after incubation with 2.5 μ g of rBax while those from WT required 10 μ g of rBax. Conclusion: These results demonstrate that MAVS protects cardiomyocyte under oxidative stress by interfering with Bax-mediated cytochrome c release from mitochondria.


2013 ◽  
Vol 63 (4) ◽  
pp. 493-503 ◽  
Author(s):  
Tiam Feridooni ◽  
Chris Mac Donald ◽  
Di Shao ◽  
Pollen Yeung ◽  
Remigius U. Agu

Abstract To investigate potential prevention or attenuation of anti- cancer drug induced cardiotoxicity using anti-ischemic drugs, a rat myoblast (H9c2) cell line was used as our in vitro cardiac model. Irinotecan and doxorubicin were found to be cytotoxic for the H9c2 cell line with IC50 of 30.69 ± 6.20 and 20.94 ± 6.05 mmol L-1, respectively. 5-Flurouracil and cladribine were not cytotoxic and thus IC50 could not be calculated. When 100 mmol L-1 doxorubicin was incubated for 72 hours with 50 mmol L-1 diltiazem, 100 mmol L-1 dexrazoxane and 100 mmol L-1 losartan, respectively, there was a 58.7 ± 10.2, 52.2 ± 11.7 and 44.7 ± 5.4 % reduction in cell death. When 200 mmol L-1 irinotecan was incubated for 72 hours with 100 mmol L-1 dexrazoxane, losartan and diltiazem, respectively, a 27.7 ± 6.9, 25.6 ± 5.1, and 19.1 ± 2.3 % reduction in cell death was observed. Our data suggests that losartan and diltiazem were as effective as dexrazoxane in protecting the cells against irinotecan- and doxorubicin-induced cell toxicity. These findings offer potential uses of anti- -ischemic drugs for ablation of cytotoxicity in response to mitochondrial injury, thereby improving patient outcomes and reducing health-care costs.


Sign in / Sign up

Export Citation Format

Share Document