Angiopoietin-2 promotes inflammatory lymphangiogenesis and its effect can be blocked by the specific inhibitor L1-10

2012 ◽  
Vol 302 (1) ◽  
pp. H215-H223 ◽  
Author(s):  
Zhi-Xin Yan ◽  
Zhao-Hua Jiang ◽  
Ning-Fei Liu

Angiopoietin (Ang)-2, a ligand of the receptor tyrosine kinase Tie2, is known to be involved in the regulation of embryonic lymphangiogenesis. However, the role of Ang-2 in postnatal pathological lymphangiogenesis, such as inflammation, is largely unknown. We used a combination of imaging, molecular, and cellular approaches to investigate whether Ang-2 is involved in inflammatory lymphangiogenesis. We observed strong and continuous expression of Ang-2 on newly generated lymphatic vessels for 2 wk in sutured corneas of BALB/c mice. This expression was concurrent with an increased number of lymphatic vessels. TNF-α expression also increased, with peak TNF-α expression occurring before peak Ang-2 expression was reached. In vitro experiments showed that TNF-α stimulates Ang-2 and Tie2 and ICAM-1 expression on human lymphatic endothelial cells (LECs) and blood vascular endothelial cells (BECs). Ang-2 alone did not affect the biological behavior of LECs, whereas Ang-2 combined with TNF-α significantly promoted the proliferation of LECs but not BECs. In mouse models, blockade of Ang-2 with L1-10, an Ang-2-specific inhibitor, significantly inhibited lymphangiogenesis but promoted angiogenesis. These results clearly indicate that Ang-2 acts as a crucial regulator of inflammatory lymphangiogenesis by sensitizing the lymphatic vasculature to inflammatory stimuli, thereby directly promoting lymphangiogenesis. The involvement of Ang-2 in inflammatory lymphangiogenesis provides a strong rationale for the exploitation of anti-Ang-2 treatment in the prevention and treatment of tumor metastasis and transplant rejection.

2021 ◽  
Vol 8 ◽  
Author(s):  
Wenyi Wu ◽  
Huizuo Xu ◽  
Zhishang Meng ◽  
Jianxi Zhu ◽  
Siqi Xiong ◽  
...  

Proliferative diabetic retinopathy (PDR), characterized mainly with abnormal epiretinal angiogenesis forming fibrovascular membranes (FVMs), threatens vision of people with diabetes; FVMs consist of extracellular matrix and a variety of cell types including vascular endothelial cells. Axl, one of receptor tyrosine kinases, can be activated indirectly by vascular endothelial growth factor-A (VEGF-A) via an intracellular route for promoting angiogenesis. In this study, we revealed that growth arrest-specific protein 6 (Gas6), a specific ligand of Axl, was elevated in vitreous from patients with PDR and that Axl was activated in FVMs from patients with PDR. In addition, we demonstrated that in cultured human retinal microvascular endothelial cells (HRECs), Axl inhibition via suppression of Axl expression with Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR-associated protein 9 or through inactivation with its specific inhibitor R428 blocked PDR vitreous-induced Akt activation and proliferation of HRECs. Furthermore, PDR vitreous-heightened migration and tube formation of HRECs were also blunted by restraining Axl. These results indicate that in the pathogenesis of PDR, Axl can be activated by Gas6 binding directly and by VEGF-A via an intracellular route indirectly, suggesting that Axl plays a pivotal role in the development of PDR and that Axl inhibition shows a bright promise for PDR therapy.


1979 ◽  
Author(s):  
S. Moncada ◽  
S. Bunting

The inhibitory effect of vascular endothelial cells on platelet aggregation is due to their ability to release prostacyclin. The existence of an ADPase has been confirmed in endothelial cells but this enzymes does not seem to be related to the anti-aggregating properties of vascular endothelium. In vitro, the release of prostacyclin by humand and rabbit endothelial cells persists after several subcultures. The production of PGI2 can be demonstrated by its inhibition by aspirin-like drugs or 15-hydroperoxy arachidonic acid (a specific inhibitor of PGI2 synthesis). Moreover, the antiaggregating activity is antagonised by an antibody to 5,6 dihydro prostacyclin which cross reacts and neutralises prostacyclin.


2015 ◽  
Vol 112 (43) ◽  
pp. E5815-E5824 ◽  
Author(s):  
Kenneth Cheung ◽  
Liang Ma ◽  
Guosu Wang ◽  
David Coe ◽  
Riccardo Ferro ◽  
...  

Constitutive resistance to cell death induced by inflammatory stimuli activating the extrinsic pathway of apoptosis is a key feature of vascular endothelial cells (ECs). Although this property is central to the maintenance of the endothelial barrier during inflammation, the molecular mechanisms of EC protection from cell-extrinsic, proapoptotic stimuli have not been investigated. We show that the Ig-family member CD31, which is expressed by endothelial but not epithelial cells, is necessary to prevent EC death induced by TNF-α and cytotoxic T lymphocytes in vitro. Combined quantitative RT-PCR array and biochemical analysis show that, upon the engagement of the TNF receptor with TNF-α on ECs, CD31 becomes activated and, in turn, counteracts the proapoptotic transcriptional program induced by TNF-α via activation of the Erk/Akt pathway. Specifically, Akt activation by CD31 signals prevents the localization of the forkhead transcription factor FoxO3 to the nucleus, thus inhibiting transcription of the proapoptotic genes CD95/Fas and caspase 7 and de-repressing the expression of the antiapoptotic gene cFlar. Both CD31 intracellular immunoreceptor tyrosine-based inhibition motifs are required for its prosurvival function. In vivo, CD31 gene transfer is sufficient to recapitulate the cytoprotective mechanisms in CD31− pancreatic β cells, which become resistant to immune-mediated rejection when grafted in fully allogeneic recipients.


2000 ◽  
Vol 268 (3) ◽  
pp. 809-813 ◽  
Author(s):  
Haruhiko Kamada ◽  
Yasuo Tsutsumi ◽  
Tetsunari Kihira ◽  
Shin-ichi Tsunoda ◽  
Yoko Yamamoto ◽  
...  

2021 ◽  
Vol 118 (11) ◽  
pp. e2022248118
Author(s):  
Hemant Giri ◽  
Sumith R. Panicker ◽  
Xiaofeng Cai ◽  
Indranil Biswas ◽  
Hartmut Weiler ◽  
...  

Thrombomodulin (TM) is a thrombin receptor on endothelial cells that is involved in promoting activation of the anticoagulant protein C pathway during blood coagulation. TM also exerts protective anti-inflammatory properties through a poorly understood mechanism. In this study, we investigated the importance of TM signaling to cellular functions by deleting it from endothelial cells by CRISPR-Cas9 technology and analyzed the resultant phenotype of TM-deficient (TM−/−) cells. Deficiency of TM in endothelial cells resulted in increased basal permeability and hyperpermeability when stimulated by thrombin and TNF-α. The loss of the basal barrier permeability function was accompanied by increased tyrosine phosphorylation of VE-cadherin and reduced polymerization of F-actin filaments at cellular junctions. A significant increase in basal NF-κB signaling and expression of inflammatory cell adhesion molecules was observed in TM−/− cells that resulted in enhanced adhesion of leukocytes to TM−/− cells in flow chamber experiments. There was also a marked increase in expression, storage, and release of the von Willebrand factor (VWF) and decreased storage and release of angiopoietin-2 in TM−/− cells. In a flow chamber assay, isolated platelets adhered to TM−/− cells, forming characteristic VWF–platelet strings. Increased VWF levels and inflammatory foci were also observed in the lungs of tamoxifen-treated ERcre-TMf/f mice. Reexpression of the TM construct in TM−/− cells, but not treatment with soluble TM, normalized the cellular phenotype. Based on these results, we postulate cell-bound TM endows a quiescent cellular phenotype by tightly regulating expression of procoagulant, proinflammatory, and angiogenic molecules in vascular endothelial cells.


1979 ◽  
Author(s):  
S. Korach ◽  
D. Ngo

Adult pig aortas, sectioned longitudinally, were incubated in 0.1% collagenase-PBS (15 mn, 37°C). Gentle scraping of the lumenal surface resulted in high yields (3-4 x 106 cell/aorta) of viable endothelial cells, essentially devoid of other cell types by morphological and immunochemical (F VIII-antigen) criteria. Confluent monolayers were incubated for various times (5 mn to 1 wk) with decomplemented rabbit antisera raised against pig endothelial cells. Changes in cell morphology appeared to depend on antibody concentration rather than on duration of contact with antiserum. High concentrations of antiserum (5 to 20%) led to cytoplasmic shredding, bulging of cells and extensive vacuolization, whereas at lower concentrations, cells appeared almost normal. Transmission EM studies by the indirect immunoperoxydase method showed antibodies reacting with unfixed cells to be distributed all over the upper cell surface, in the outer parts of intercellular junctions, and within numerous pinocytotic vesicles. Much weaker reactions could also be seen at the lower cell surface. When viewed under the Scanning EM, antiserum-treated endothelial cells also disclosed antibody concentration-dependent bulging and release of cells from their substrate. In vitro studies of gradual modifications of vascular endothelial cells acted upon by antibodies should provide a better understanding of the structural and biochemical processes underlying endothelial damage and detachment.


1988 ◽  
Vol 16 (1) ◽  
pp. 48-53
Author(s):  
Marina Ziche ◽  
Lucia Morbidelli ◽  
Annalisa Rubino ◽  
Piero Dolara ◽  
Stefano Bianchi ◽  
...  

Polymorphonuclear neutrophil (PMN) interaction with vascular endothelial cells is the initial event in the migration of neutrophils through blood vessel walls before reaching inflammation sites in tissues. The interaction between fibroblasts and endothelial cells and their extracellular matrices might be modulated by the activation of neutrophils that occurs at inflammatory reaction sites. We have used an in vitro model to study PMN function, measuring the adhesion of human PMNs to capillary endothelial cells and fibroblasts grown in culture and to their extracellular matrices. The interaction was measured in basal conditions and in the presence of the chemotactic effector, formyl-methionyl-leucyl-phenylalanine (FMLP at the concentration of 10 7M). Adhesion was expressed by the number of adherent PMNs/mm2 on a histological specimen. Moreover, we have adapted a program for image analysis to quantify neutrophil adhesion. Three times more PMNs adhered to matrices than to monolayers, and adherence could be increased by the presence of 10-7M FMLP, except in the case of fibroblast monolayers. We found a good correlation between microscopic observation and computerised image analysis measuring PMN adhesiveness to extracellular matrices.


Sign in / Sign up

Export Citation Format

Share Document