Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion

2005 ◽  
Vol 288 (4) ◽  
pp. H1730-H1739 ◽  
Author(s):  
Amy G. Tsai ◽  
Cesar Acero ◽  
Patricia R. Nance ◽  
Pedro Cabrales ◽  
John A. Frangos ◽  
...  

We tested the hypothesis that high-viscosity (HV) plasma in extreme hemodilution causes wall shear stress to be greater than low-viscosity (LV) plasma, leading to enhanced production of nitric oxide (NO). The perivascular concentration of NO was measured in arterioles and venules and the tissue of the hamster chamber window model, subjected to acute extreme hemodilution, with a hematocrit (Hct) of 11% using Dextran 500 ( n = 6) or Dextran 70 ( n = 5) with final plasma viscosities of 1.99 ± 0.11 and 1.33 ± 0.04 cp, respectively. HV plasma significantly increased the periarteriolar, perivenular, and tissue NO concentration by 2.0, 1.9, and 1.4 times the control ( n = 7). The NO concentration with LV plasma was not statistically different from control. Arteriolar shear stress was significantly increased in HV plasma relative to LV plasma in arterioles but not in venules. Aortic endothelial NO synthase (eNOS) protein expression was increased with HV plasma but not with LV plasma. There was a weak correlation between perivascular NO concentration and the locally calculated shear stress induced by the procedures, when blood viscosity was corrected according to Hct values previously determined in studies of microvascular Hct distribution. The finding that the periarteriolar and venular NO concentration in HV plasma was the same although arteriolar shear stress was significantly greater than venular shear stress maybe be due to differences in vessel wall metabolism between arterioles and venules and the presence of NO transport through the blood stream in the microcirculation. Results support the concept that in extreme hemodilution HV plasma maintains functional capillary density through a NO-mediated vasodilatation.

1998 ◽  
Vol 275 (6) ◽  
pp. H2170-H2180 ◽  
Author(s):  
Amy G. Tsai ◽  
Barbara Friesenecker ◽  
Michael McCarthy ◽  
Hiromi Sakai ◽  
Marcos Intaglietta

Effect of increasing blood viscosity during extreme hemodilution on capillary perfusion and tissue oxygenation was investigated in the awake hamster skinfold model. Two isovolemic hemodilution steps were performed with 6% Dextran 70 [molecular weight (MW) = 70,000] until systemic hematocrit (Hct) was reduced by 65%. A third step reduced Hct by 75% and was performed with the same solution [low viscosity (LV)] or a high-molecular-weight 6% Dextran 500 solution [MW = 500,000, high viscosity (HV)]. Final plasma viscosities were 1.4 and 2.2 cP (baseline of 1.2 cP). Hct was reduced to 11.2 ± 1.1% from 46.2 ± 1.5% for LV and to 11.9 ± 0.7% from 47.3 ± 2.1% for HV. HV produced a greater mean arterial blood pressure than LV. Functional capillary density (FCD) was substantially higher after HV (85 ± 12%) vs. LV (38 ± 30%) vs. baseline (100%).[Formula: see text] levels measured with Pd-porphyrin phosphorescence microscopy were not statistically changed from baseline until after the third hemodilution step. Wall shear rate (WSR) decreased in arterioles and venules after LV and only in arterioles after HV. Wall shear stress (WSR × plasma viscosity) was substantially higher after HV vs. LV. Increased mean arterial pressure and shear stress-dependent release of endothelium-derived relaxing factor are possible mechanisms that improved arteriolar and venular blood flow and FCD after HV vs. LV exchange protocols.


2005 ◽  
Vol 288 (4) ◽  
pp. H1708-H1716 ◽  
Author(s):  
Pedro Cabrales ◽  
Amy G. Tsai ◽  
Marcos Intaglietta

Extreme hemodilution was performed in the hamster chamber window model using 6% Dextran 70, lowering systemic hematocrit by 60%. Animals were subsequently divided into three groups and hemodiluted to a hematocrit of 11% using 6% Dextran 70, 6% Dextran 500, and a 4% Dextran 70 + 0.7% alginate solution ( n = 6 each group). Final plasma viscosities were 1.4 ± 0.2, 2.2 ± 0.1, and 2.7 ± 0.2 cp, respectively, ( P < 0.05, high viscosity vs. low viscosity). Blood viscosities were 2.1 ± 0.2, 2.9 ± 0.4, and 3.9 ± 0.3 cp, respectively. The lowest blood and plasma viscosity group had a significantly lower functional capillary density, 37 ± 16%, whereas the two high-viscosity solutions were 71 ± 15% and 76 ± 12% ( P < 0.05, high viscosity vs. low viscosity), respectively. Arteriolar and venular flow in the Dextran 500 and alginate groups was higher than baseline (i.e., normal nontreated animals), whereas the low-viscosity group showed a reduction in flow. These microvascular changes were paralleled by changes in base excess, which was negative for the Dextran 70 group and positive for the other groups. However, tissue Po2 was uniformly low for all groups (average of 1.4 mmHg). Calculation of tissue oxygen consumption in the window chamber based on the microvascular data, flow, and intravascular Po2 showed that only the alginate + Dextran 70 solution-exchanged animals returned to baseline oxygen consumption, whereas the other groups were lower than baseline ( P < 0.05). These results show that hemodilution performed with high-viscosity plasma expanders yields systemic arterial pressures and functional capillary densities that are significantly higher ( P < 0.05) than those obtained with 6% Dextran 70, a fluid whose viscosity is similar to that of plasma. A condition for obtaining these results is that the oncotic pressure of the plasma expander be titrated to near normal, so that autotransfusion of fluid from the tissue into the vascular compartment does not reduce the effects of increasing plasma viscosity and increased shear stress on the microvascular wall.


2006 ◽  
Vol 291 (5) ◽  
pp. H2445-H2452 ◽  
Author(s):  
Pedro Cabrales ◽  
Amy G. Tsai

The hamster window chamber model was used to study systemic and microvascular hemodynamic responses to extreme hemodilution with low- and high-viscosity plasma expanders (LVPE and HVPE, respectively) to determine whether plasma viscosity is a factor in homeostasis during extreme anemic conditions. Moderated hemodilution was induced by two isovolemic steps performed with 6% 70-kDa dextran until systemic hematocrit (Hct) was reduced to 18% ( level 2). In a third isovolemic step, hemodilution with LVPE (6% 70-kDa dextran, 2.8 cP) or HVPE (6% 500-kDa dextran, 5.9 cP) reduced Hct to 11%. Systemic parameters, cardiac output (CO), organ flow distribution, microhemodynamics, and functional capillary density, were measured after each exchange dilution. Fluorescent-labeled microspheres were used to measure organ (brain, heart, kidney, liver, lung, and spleen) and window chamber blood flow. Final blood and plasma viscosities after the entire protocol were 2.1 and 1.4 cP, respectively, for LVPE and 2.8 and 2.2 cP, respectively, for HVPE (baseline = 4.2 and 1.2 cP, respectively). HVPE significantly elevated mean arterial pressure and CO compared with LVPE but did not increase vascular resistance. Functional capillary density was significantly higher for HVPE [87% (SD 7) of baseline] than for LVPE [42% (SD 11) of baseline]. Increases in mean arterial blood pressure, CO, and shear stress-mediated factors could be responsible for maintaining organ and microvascular perfusion after exchange with HVPE compared with LVPE. Microhemodynamic data corresponded to microsphere-measured perfusion data in vital organs.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2377
Author(s):  
Wonseop Lim ◽  
Gyeong Jin Kim ◽  
Hyun Woo Kim ◽  
Jiyeon Lee ◽  
Xiaowei Zhang ◽  
...  

Bioink based 3D bioprinting is a promising new technology that enables fabrication of complex tissue structures with living cells. The printability of the bioink depends on the physical properties such as viscosity. However, the high viscosity bioink puts shear stress on the cells and low viscosity bioink cannot maintain complex tissue structure firmly after the printing. In this work, we applied dual crosslinkable bioink using Kappa-carrageenan (κ-CA) to overcome existing shortcomings. κ-CA has properties such as biocompatibility, biodegradability, shear-thinning and ionic gelation but the difficulty of controlling gelation properties makes it unsuitable for application in 3D bioprinting. This problem was solved by synthesizing methacrylated Kappa-carrageenan (MA-κ-CA), which can be dual crosslinked through ionic and UV (Ultraviolet) crosslinking to form hydrogel using NIH-3T3 cells. Through MA substitutions, the rheological properties of the gel could be controlled to reduce the shear stress. Moreover, bioprinting using the cell-laden MA-κ-CA showed cell compatibility with enhanced shape retention capability. The potential to control the physical properties through dual crosslinking of MA-κ-CA hydrogel is expected to be widely applied in 3D bioprinting applications.


2006 ◽  
Vol 291 (2) ◽  
pp. H581-H590 ◽  
Author(s):  
Pedro Cabrales ◽  
Judith Martini ◽  
Marcos Intaglietta ◽  
Amy G. Tsai

Responses to exchange transfusion with red blood cells (RBCs) containing methemoglobin (MetRBC) were studied in an acute isovolemic hemodiluted hamster window chamber model to determine whether oxygen content participates in the regulation of systemic and microvascular conditions during extreme hemodilution. Two isovolemic hemodilution steps were performed with 6% dextran 70 kDa (Dex70) until systemic hematocrit (Hct) was reduced to 18% ( Level 2). A third-step hemodilution reduced the functional Hct to 75% of baseline by using either a plasma expander (Dex70) or blood adjusted to 18% Hct with all MetRBCs. In vivo functional capillary density (FCD), microvascular perfusion, and oxygen distribution in microvascular networks were measured by noninvasive methods. Methylene blue was administered intravenously to reduce methemoglobin (rRBC), which increased oxygen content with no change in Hct or viscosity from MetRBC. Final blood viscosities after the entire protocol were 2.1 cP for Dex70 and 2.8 cP for MetRBC (baseline, 4.2 cP). MetRBC had a greater mean arterial pressure (MAP) than did Dex70. FCD was substantially higher for MetRBC [82 (SD 6) of baseline] versus Dex70 [38 (SD 10) of baseline], and reduction of methemoglobin to oxyhemoglobin did not change FCD [84% (SD 5) of baseline]. Po2 levels measured with palladium-meso-tetra(4-carboxyphenyl)porphyrin phosphorescence were significantly changed for Dex70 and MetRBC compared with Level 2 (Hct 18%). Reduction of methemoglobin to oxyhemoglobin partially restored Po2 to Level 2. Wall shear rate and wall shear stress decreased in arterioles and venules for Dex70 and did not change for MetRBC or rRBC. Increased MAP and shear stress-mediated factors could be the possible mechanisms that improved perfusion flow and FCD after exchange for MetRBC. Thus the fall in systemic and microvascular conditions during extreme hemodilution with low-viscosity plasma expanders seems to be, in part, from the decrease in blood viscosity independent of the reduction in oxygen content.


2008 ◽  
Vol 294 (5) ◽  
pp. H2098-H2105 ◽  
Author(s):  
Ozlem Yalcin ◽  
Pinar Ulker ◽  
Ugur Yavuzer ◽  
Herbert J. Meiselman ◽  
Oguz K. Baskurt

Endothelial function is modulated by wall shear stress acting on the vessel wall, which is determined by fluid velocity and the local viscosity near the vessel wall. Red blood cell (RBC) aggregation may affect the local viscosity by favoring axial migration. The aim of this study was to investigate the role of RBC aggregation, with or without altered plasma viscosity, in the mechanically induced nitric oxide (NO)-related mechanisms of endothelial cells. Human umbilical vein endothelial cells (HUVEC) were cultured on the inner surface of cylindrical glass capillaries that were perfused with RBC suspensions having normal and increased aggregation at a nominal shear stress of 15 dyn/cm2. RBC aggregation was enhanced by two different approaches: 1) poloxamer-coated RBC suspended in normal, autologous plasma, resulting in enhanced aggregation but unchanged plasma viscosity and 2) normal RBC suspended in autologous plasma containing 0.5% dextran (mol mass 500 kDa), with a similar level of RBC aggregation but higher plasma viscosity. Compared with normal cells in unmodified plasma, perfusion with suspensions of poloxamer-coated RBC in normal plasma resulted in decreased levels of NO metabolites and serine 1177 phosphorylation of endothelial nitric oxide synthase (eNOS). Perfusion with normal RBC in plasma containing dextran resulted in a NO level that remained elevated, whereas only a modest decrease of phosphorylated eNOS level was observed. The results of this study suggest that increases of RBC aggregation tendency affect endothelial cell functions by altering local blood composition, especially if the alterations of RBC aggregation are due to modified cellular properties and not to plasma composition changes.


1981 ◽  
Vol 103 (2) ◽  
pp. 305-313 ◽  
Author(s):  
B. Gecim ◽  
W. O. Winer

The non-Newtonian constitutive equation proposed by Winer and Bair [1] is applied in a conventional isothermal film thickness analysis of line contact lubrication of rolling elements. The present analysis provides four different dimensionless film thickness equations for four different regimes of lubrication. Due to the formulation technique used in deriving the governing pressure-gradient equation, the present study is recommended for high viscosity, high rolling speed, and low limiting shear stress cases where Newtonian models fail to match the experimental data. Comparison of the present film thickness equations with the Newtonian correspondences in each lubrication regime shows a considerable difference, but the analysis suffers from the fact that the limiting shear stress parameters of these high viscosity lubricants need to be determined experimentally. The present analysis assumes a reasonable range of limiting shear stress which is smaller than the corresponding values for low viscosity lubricants which are predominantly Newtonian in behavior (unless severe rolling and/or sliding with high loads is applied).


1995 ◽  
Vol 73 (01) ◽  
pp. 118-121 ◽  
Author(s):  
Noriko Yamamoto ◽  
Koichi Yokota ◽  
Akira Yamashita ◽  
Minoru Oda

SummaryUsing guinea pigs, a study was conducted on the effects of KBT-3022, a new anti-platelet agent, on hemorheological properties in various tests including blood filterability, blood viscosity, shear stress-induced red blood cell (RBC) deformability and contents of ATP and 2,3-diphosphoglycerate (2,3-DPG). Oral administration of KBT-3022 at 1 and 10 mg/kg significantly increased blood filterability, and significantly reduced blood viscosity at 10 mg/kg without changing the hematocrit, plasma fibrinogen concentration or plasma viscosity. KBT-3022 (10 mg/kg, p.o.) improved RBC deformability in response to shear stress, which was evoked by passing the blood through a thin tube. This dose of KBT-3022 also increased the contents of ATP and 2,3-DPG in RBC. These findings indicate that KBT-3022 may reduce blood viscosity as a sequel to improvement of RBC deformability through direct action on RBC. The increase in the intracellular levels of ATP and 2,3-DPG was considered to be involved in this improvement of hemorheological properties. These hemorheological effects of KBT-3022 appear to be promising for the treatment of patients with ischemic vascular disease.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Ali Alrahlah ◽  
Abdel-Basit Al-Odayni ◽  
Haifa Fahad Al-Mutairi ◽  
Bashaer Mousa Almousa ◽  
Faisal S. Alsubaie ◽  
...  

This study aimed to synthesize new bisphenol A-glycidyl methacrylate (BisGMA) derivatives, targeting a reduction in its viscosity by substituting one of its OH groups, the leading cause of its high viscosity, with a chlorine atom. Hence, this monochloro-BisGMA (mCl-BisGMA) monomer was synthesized by Appel reaction procedure, and its structure was confirmed using Fourier transform infrared spectroscopy, 1H and 13C-nuclear magnetic resonance spectroscopy, and mass spectroscopy. The viscosity of mCl-BisGMA (8.3 Pa·s) was measured under rheometry conditions, and it was found to be more than 65-fold lower than that of BisGMA (566.1 Pa·s) at 25 °C. For the assessment of the viscosity changes of model resins in the presence of mCl-BisGMA, a series of resin matrices, in which, besides BisGMA, 50 wt % was triethylene glycol dimethacrylate, were prepared and evaluated at 20, 25, and 35 °C. Thus, BisGMA was incrementally replaced by 25% mCl-BisGMA to obtain TBC0, TBC25, TBC50, TBC75, and TBC100 blends. The viscosity decreased with temperature, and the mCl-BisGMA content in the resin mixture increased. The substantial reduction in the viscosity value of mCl-BisGMA compared with that of BisGMA may imply its potential use as a dental resin matrix, either alone or in combination with traditional monomers. However, the various properties of mCl-BisGMA-containing matrices should be evaluated.


Sign in / Sign up

Export Citation Format

Share Document