Role of USF1 phosphorylation on cardiac α-myosin heavy chain promoter activity

2002 ◽  
Vol 283 (1) ◽  
pp. H213-H219 ◽  
Author(s):  
Qianxun Xiao ◽  
Agnes Kenessey ◽  
Kaie Ojamaa

Contractile activity of the cardiac myocyte is required for maintaining cell mass and phenotype, including expression of the cardiac-specific α-myosin heavy chain (α-MHC) gene. An E-box hemodynamic response element (HME) located at position −47 within the α-MHC promoter is both necessary and sufficient to confer contractile responsiveness to the gene and has been shown to bind upstream stimulatory factor-1 (USF1). When studied in spontaneously contracting cardiac myocytes, there is enhanced binding of USF1 to the HME compared with quiescent cells, which correlates with a threefold increase in α-MHC promoter activity. A molecular mechanism by which contractile function modulates α-MHC transcriptional activity may involve signaling via phosphorylation of USF1. The present studies showed that purified rat USF1 was phosphorylated in vitro by protein kinase C (PKC) and cAMP-dependent protein kinase (PKA) but not casein kinase II. Phosphorylated USF1 by either PKC or PKA had increased DNA binding activity to the HME. PKC-mediated phosphorylation also leads to the formation of USF1 multimers as assessed by gel shift assay. Analysis of in vivo phosphorylated nuclear proteins from cultured ventricular myocytes showed that USF1 was phosphorylated, and resolution by two-dimensional gel electrophoresis identified at least two distinct phosphorylated USF1 molecules. These results suggest that endogenous kinases can covalently modify USF1 and provide a potential molecular mechanism by which the contractile stimulus mediates changes in myocyte gene transcription.

1997 ◽  
Vol 273 (2) ◽  
pp. C394-C403 ◽  
Author(s):  
M. Qi ◽  
J. L. Puglisi ◽  
K. L. Byron ◽  
K. Ojamaa ◽  
I. Klein ◽  
...  

To determine if mechanical signals or alterations in intracellular Ca2+ concentration ([Ca2+]i) affect myosin heavy chain (MHC) gene expression in spontaneously beating, neonatal rat ventricular myocytes, contractile activity was inhibited with verapamil, KCl, or 2,3-butanedione monoxime (BDM), and their acute and chronic effects on myocyte shortening, [Ca2+]i, and MHC gene expression were examined. Despite their differing effects on [Ca2+]i, verapamil, KCl, and BDM all inhibited contractile activity and markedly downregulated beta-MHC mRNA levels to 24 +/- 5, 21 +/- 7, and 6 +/- 2% of contracting cells, respectively. In contrast, these inhibitors of contraction upregulated alpha-MHC mRNA levels to 163 +/- 19, 156 +/- 7, and 198 +/- 20% of contracting cells, respectively. Transient transfection with a rat beta-MHC promoter-luciferase expression plasmid demonstrated that all inhibitors of contraction significantly decreased beta-MHC promoter activity. Paradoxically, contractile arrest also inhibited alpha-MHC promoter activity, suggesting that increased alpha-MHC mRNA levels resulted from posttranscriptional mechanisms. Actinomycin D mRNA stability assays indicated that alpha-MHC mRNA half-life was prolonged in noncontracting cells (33 h) compared with contracting myocytes (14 h). Contraction-dependent alterations in MHC gene expression were not dependent on release of angiotensin II or other growth factors into the culture medium. Thus intrinsic mechanical signals rather than alterations in [Ca2+]i regulate alpha-MHC and beta-MHC gene expression by both transcriptional and posttranscriptional mechanisms.


Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 483-498
Author(s):  
J Ahnn ◽  
A Fire

Abstract We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.


1998 ◽  
Vol 18 (12) ◽  
pp. 7243-7258 ◽  
Author(s):  
Madhu Gupta ◽  
Radovan Zak ◽  
Towia A. Libermann ◽  
Mahesh P. Gupta

ABSTRACT The expression of the α-myosin heavy chain (MHC) gene is restricted primarily to cardiac myocytes. To date, several positive regulatory elements and their binding factors involved in α-MHC gene regulation have been identified; however, the mechanism restricting the expression of this gene to cardiac myocytes has yet to be elucidated. In this study, we have identified by using sequential deletion mutants of the rat cardiac α-MHC gene a 30-bp purine-rich negative regulatory (PNR) element located in the first intronic region that appeared to be essential for the tissue-specific expression of the α-MHC gene. Removal of this element alone elevated (20- to 30-fold) the expression of the α-MHC gene in cardiac myocyte cultures and in heart muscle directly injected with plasmid DNA. Surprisingly, this deletion also allowed a significant expression of the α-MHC gene in HeLa and other nonmuscle cells, where it is normally inactive. The PNR element required upstream sequences of the α-MHC gene for negative gene regulation. By DNase I footprint analysis of the PNR element, a palindrome of two high-affinity Ets-binding sites (CTTCCCTGGAAG) was identified. Furthermore, by analyses of site-specific base-pair mutation, mobility gel shift competition, and UV cross-linking, two different Ets-like proteins from cardiac and HeLa cell nuclear extracts were found to bind to the PNR motif. Moreover, the activity of the PNR-binding factor was found to be increased two- to threefold in adult rat hearts subjected to pressure overload hypertrophy, where the α-MHC gene is usually suppressed. These data demonstrate that the PNR element plays a dual role, both downregulating the expression of the α-MHC gene in cardiac myocytes and silencing the muscle gene activity in nonmuscle cells. Similar palindromic Ets-binding motifs are found conserved in the α-MHC genes from different species and in other cardiac myocyte-restricted genes. These results are the first to reveal a role of the Ets class of proteins in controlling the tissue-specific expression of a cardiac muscle gene.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 871-883 ◽  
Author(s):  
K.E. Yutzey ◽  
J.T. Rhee ◽  
D. Bader

A unique myosin heavy chain cDNA (AMHC1), which is expressed exclusively in the atria of the developing chicken heart, was isolated and used to study the generation of diversified cardiac myocyte cell lineages. The pattern of AMHC1 gene expression during heart formation was determined by whole-mount in situ hybridization. AMHC1 is first activated in the posterior segment of the heart when these myocytes initially differentiate (Hamburger and Hamilton stage 9+). The anterior segment of the heart at this stage does not express AMHC1 although the ventricular myosin heavy chain isoform is strongly expressed beginning at stage 8+. Throughout chicken development, AMHC1 continues to be expressed in the posterior heart tube as it develops into the diversified atria. The early activation of AMHC1 expression in the posterior cardiac myocytes suggests that the heart cells are diversified when they differentiate initially and that the anterior heart progenitors differ from the posterior heart progenitors in their myosin isoform gene expression. The expression domain of AMHC1 can be expanded anteriorly within the heart tube by treating embryos with retinoic acid as the heart primordia fuse. Embryos treated with retinoic acid prior to the initiation of fusion of the heart primordia express AMHC1 throughout the entire heart-forming region and fusion of the heart primordia is inhibited. These data indicate that retinoic acid treatment produces an expansion of the posterior (atrial) domain of the heart and suggests that diversified fates of cardiomyogenic progenitors can be altered.


1986 ◽  
Vol 103 (6) ◽  
pp. 2153-2161 ◽  
Author(s):  
L C Cerny ◽  
E Bandman

The expression of neonatal myosin heavy chain (MHC) was examined in developing embryonic chicken muscle cultures using a monoclonal antibody (2E9) that has been shown to be specific for that isoform (Bandman, E., 1985, Science (Wash. DC), 227: 780-782). After 1 wk in vitro some myotubes could be stained with the antibody, and the number of cells that reacted with 2E9 increased with time in culture. All myotubes always stained with a second monoclonal antibody that reacted with all MHC isoforms (AG19) or with a third monoclonal antibody that reacted with the embryonic but not the neonatal MHC (EB165). Quantitation by ELISA of an extract from 2-wk cultures demonstrated that the neonatal MHC represented between 10 and 15% of the total myosin. The appearance of the neonatal isoform was inhibited by switching young cultures to medium with a higher [K+] which has been shown to block spontaneous contractions of myotubes in culture. Furthermore, if mature cultures that reacted with the neonatal antibody were placed into high [K+] medium, neonatal MHC disappeared from virtually all myotubes within 3 d. The effect of high [K+] medium was reversible. When cultures maintained in high [K+] medium for 2 wk were placed in standard medium, which permitted the resumption of contractile activity, within 24 h cells began to react with the neonatal specific antibody, and by 72 h many myotubes were strongly positive. Since similar results were also obtained by inhibiting spontaneous contractions with tetrodotoxin, we suggest that the development of contractile activity is not only associated with the maturation of myotubes in culture, but may also be the signal that induces the expression of the neonatal MHC.


1996 ◽  
Vol 271 (5) ◽  
pp. C1447-C1456 ◽  
Author(s):  
K. L. Byron ◽  
J. L. Puglisi ◽  
J. R. Holda ◽  
D. Eble ◽  
A. M. Samarel

Blockade of L-type Ca2+ channels in spontaneously contracting cultured neonatal rat ventricular myocytes causes contractile arrest, myofibrillar disassembly, and accelerated myofibrillar protein turnover. To determine whether myofibrillar protein turnover. To determine whether myofibrillar atrophy results indirectly from loss of mechanical signals or directly from alterations in intracellular Ca2+ concentration ([Ca2+]i), contractile activity was inhibited with verapamil (10 microM) or 2,3-butanedione monoxime (BDM), and their effects on cell shortening, [Ca2+]i, and myosin heavy chain (MHC) turnover were assessed. Control cells demonstrated spontaneous [Ca2+]i transients (peak amplitude 232 +/- 15 nM, 1-2 Hz) and vigorous contractile activity. Verapamil inhibited shortening by eliminating spontaneous [Ca2+]i transients. Low concentrations of BDM (5.0-7.5 mM) had no effect on basal or peak [Ca2+]i transient amplitude but reduced cell shortening, whereas 10 mM BDM reduced both [Ca2+]i transient amplitude and shortening. Both agents inhibited MHC synthesis, but only verapamil accelerated MHC degradation. Thus MHC half-life does not change in parallel with contractile activity but rather more closely follows changes in [Ca2+]i. [Ca2+]i transients appear critical in maintaining myofibrillar assembly and preventing accelerated MHC proteolysis.


2001 ◽  
Vol 90 (6) ◽  
pp. 2508-2513 ◽  
Author(s):  
Thomas L. Clanton ◽  
Valerie P. Wright ◽  
Peter J. Reiser ◽  
Paul F. Klawitter ◽  
Nanduri R. Prabhakar

Intermittent hypoxia (IH), associated with obstructive sleep apnea, initiates adaptive physiological responses in a variety of organs. Little is known about its influence on diaphragm. IH was simulated by exposing rats to alternating 15-s cycles of 5% O2 and 21% O2 for 5 min, 9 sets/h, 8 h/day, for 10 days. Controls did not experience IH. Diaphragms were excised 20–36 h after IH. Diaphragm bundles were studied in vitro or analyzed for myosin heavy chain isoform composition. No differences in maximum tetanic stress were observed between groups. However, peak twitch stress ( P < 0.005), twitch half-relaxation time ( P < 0.02), and tetanic stress at 20 or 30 Hz ( P < 0.05) were elevated in IH. No differences in expression of myosin heavy chain isoforms or susceptibility to fatigue were seen. Contractile function after 30 min of anoxia (95% N2-5% CO2) was markedly preserved at all stimulation frequencies during IH and at low frequencies after 15 min of reoxygenation. Anoxia-induced increases in passive muscle force were eliminated in the IH animals ( P < 0.01). These results demonstrate that IH induces adaptive responses in the diaphragm that preserve its function in anoxia.


1992 ◽  
Vol 263 (3) ◽  
pp. C642-C652 ◽  
Author(s):  
A. M. Samarel ◽  
M. L. Spragia ◽  
V. Maloney ◽  
S. A. Kamal ◽  
G. L. Engelmann

Mechanical forces influence the growth and metabolism of a variety of cells, including cultured neonatal rat ventricular myocytes. To determine whether mechanical activity affected the synthesis and turnover of myosin heavy chain (MHC) in these striated muscle cells, MHC fractional degradative rates were measured in spontaneously beating cells and in arrested myocytes in which contractile activity was prevented by L-channel blockade (with verapamil, nifedipine, nisoldipine, and diltiazem) or K+ depolarization. MHC degradative rates were measured as the difference between rates of MHC synthesis and accumulation and in pulse-chase biosynthetic labeling experiments. Both methods indicated that contractile arrest markedly increased MHC degradation. Contractile arrest produced by L-channel blockade accelerated MHC degradation to a greater extent than K+ depolarization. The signal transduction pathway linking contractile activity to alterations in MHC degradation did not involve protein kinase C (PKC), because MHC degradation was unaffected by activating PKC in arrested cells or inhibiting PKC in spontaneously beating cells. Chloroquine and E-64 did not suppress the accelerated MHC degradation, suggesting that the rate-limiting step in MHC turnover occurred before degradative processing by cellular proteinases. Using a computer simulation, we hypothesize that the rate-limiting step in MHC turnover preceded (or was coincident with) MHC release from thick filaments. Thus mechanical forces may influence MHC half-life by regulating the rate of myosin disassembly.


Sign in / Sign up

Export Citation Format

Share Document