scholarly journals Transmural distribution of metabolic abnormalities and glycolytic activity during dobutamine-induced demand ischemia

2008 ◽  
Vol 294 (6) ◽  
pp. H2680-H2686 ◽  
Author(s):  
Mohammad N. Jameel ◽  
Xiaohong Wang ◽  
Marcel H. J. Eijgelshoven ◽  
Abdul Mansoor ◽  
Jianyi Zhang

The heterogeneity across the left ventricular wall is characterized by higher rates of oxygen consumption, systolic thickening fraction, myocardial perfusion, and lower energetic state in the subendocardial layers (ENDO). During dobutamine stimulation-induced demand ischemia, the transmural distribution of energy demand and metabolic markers of ischemia are not known. In this study, hemodynamics, transmural high-energy phosphate (HEP), 2-deoxyglucose-6-phosphate (2-DGP) levels, and myocardial blood flow (MBF) were determined under basal conditions, during dobutamine infusion (DOB: 20 μg·kg−1·min−1 iv), and during coronary stenosis + DOB + 2-deoxyglucose (2-DG) infusion. DOB increased rate pressure products (RPP) and MBF significantly without affecting the subendocardial-to-subepicardial blood flow ratio (ENDO/EPI) or HEP levels. During coronary stenosis + DOB + 2-DG infusion, RPP, ischemic zone (IZ) MBF, and ENDO/EPI decreased significantly. The IZ ratio of creatine phosphate-to-ATP decreased significantly [2.30 ± 0.14, 2.06 ± 0.13, and 2.04 ± 0.11 to 1.77 ± 0.12, 1.70 ± 0.11, and 1.72 ± 0.12 for EPI, midmyocardial (MID), and ENDO, respectively], and 2-DGP accumulated in all layers, as evidenced by the 2-DGP/PCr (0.55 ± 0.12, 0.52 ± 0.10, and 0.37 ± 0.08 for EPI, MID, and ENDO, respectively; P < 0.05, EPI > ENDO). In the IZ the wet weight-to-dry weight ratio was significantly increased compared with the normal zone (5.9 ± 0.5 vs. 4.4 ± 0.4; P < 0.05). Thus, in the stenotic perfused bed, during dobutamine-induced high cardiac work state, despite higher blood flow, the subepicardial layers showed the greater metabolic changes characterized by a shift toward higher carbohydrate metabolism, suggesting that a homeostatic response to high-cardiac work state is characterized by more glucose utilization in energy metabolism.

1981 ◽  
Vol 240 (5) ◽  
pp. H804-H810 ◽  
Author(s):  
H. D. Kleinert ◽  
H. R. Weiss

Blood flow and high-energy phosphate (HEP) content were determined simultaneously in multiple microregions of left ventricular subendocardium in 29 normal anesthetized open-chest rabbits by use of a new micromethod to determine whether a direct linear relationship existed between these parameters. Tissue samples weighed 1-2 mg. ATP and creatine phosphate (CP) content were quantitated in quick-frozen hearts by fluorometry at sites where tissue perfusion was measured by H2 clearance by use of bare-tipped platinum electrodes. A series of validation studies were conducted to ensure that 1) no significant damage to the tissue surrounding the electrode occurred during the period of experimentation and 2) no significant loss of biochemical constituents had occurred due to labile processes during freezing or storage of the tissue. Blood flow, ATP, and CP values averaged 79.1 +/- 24.1 (SD) ml.min-1.100 g-1, 4.9 +/- 1.3 mumol/g tissue, and 8.0 +/- 3.0 mumol/g tissue, respectively, and are similar to those reported in studies using larger tissue samples. Correlation between the heterogeneous distribution of tissue perfusion and HEP revealed no direct linear relationship between these parameters in the normal unstressed rabbit subendocardium.


1989 ◽  
Vol 257 (1) ◽  
pp. H289-H296 ◽  
Author(s):  
A. DeFelice ◽  
R. Frering ◽  
P. Horan

Male rats were monitored for 8 mo after severe myocardial infarction (MI) to chronicle hemodynamic and left ventricular (LV) functional changes. Blood pressure (BP), heart rate (HR), cardiac output index (CO), regional blood flow, and systemic vascular resistance (SVR) were measured with catheters and radiolabeled microspheres at 4, 7, 10, 20, and 35 wk after coronary artery ligation (n = 10–16/group) or sham operation (control; n = 9–14/group). At 4 wk, 43 +/- 1% of the LV circumference was scarred, peak LV BP, LV dP/dtmax, mean BP, SVR, and HR were 11–38% less than control (P less than 0.05), and LV end-diastolic pressure (LVEDP) was increased by 313% (P less than 0.05). Mean BP, LVEDP, LVBP, and LV dP/dtmax did not further deviate after 4 wk. However, CO and SVR changed progressively and were 67 and 33%, respectively, of control by 35 wk (P less than 0.05) when blood flow to stomach, small intestine, and kidney was 55, 38, and 27% of control. Lung and heart weights were significantly increased by 148 and 22% at 4 wk, and remained elevated, and lung dry weight-to-wet weight ratio was reduced at 7 and 10 wk. Thus the trajectory of rats with healed severe MI reflects progressive cardiac decompensation, cardiac output redistribution, and terminal heart failure.


1986 ◽  
Vol 251 (5) ◽  
pp. H1031-H1037 ◽  
Author(s):  
E. A. Breisch ◽  
F. C. White ◽  
L. E. Nimmo ◽  
C. M. Bloor

The effects of pressure-overload hypertrophy (H) on myocardial blood flow and microvasculature were studied in the porcine left ventricle. Hypertrophy was produced in nine adult pigs by an aortic cuff constriction of the ascending aorta. Eight pigs served as controls. After 30 days the aortic cuff was released, and the hypertrophy group was studied 1 day postrelease. The degree of hypertrophy, determined by left ventricular-to-body weight ratio, was 45%. With hypertrophy, left ventricular blood flows were normal at rest. During exercise with adenosine infusion, myocardial blood flow to the endomyocardium was reduced compared with the control (C) group (H = 4.02 +/- 0.35, P less than 0.05; C = 5.33 +/- 0.41 ml X min-1 X g-1). Minimal coronary vascular resistance in the endomyocardium was increased during exercise with adenosine in the hypertrophy group compared with the control group. Anatomic studies revealed that hypertrophy causes a reduction in the endomyocardial capillary density (H = 1,654 +/- 168, P less than 0.025; C = 2,168 +/- 106, no./mm2) with a similar trend noted for the transmural arteriolar density. Arteriolar media wall cross-sectional area was unaffected by the pressure overload. These results indicate that changes in the vascular bed do not parallel myocyte growth during pressure-overload hypertrophy. The resultant anatomic imbalance compromises endomyocardial flow, making this region vulnerable to ischemia.


Author(s):  
Weerana Eh Kan ◽  
Jamil Roslan ◽  
Ruzinah Isha

<p>Conservative desalination technology including distillation requires high energy and cost to operate. Hence, pretreatment process can be done prior to desalination to overcome energy demand and cost reduction. Objective of this research is to study the effect of calcination temperature of hybrid catalyst in photocatalytic reactor system in the seawater desalination, i.e. salt removal in the seawater. The catalyst was synthesized via wet impregnation method with 1:1 weight ratio of TiO<sub>2</sub> and activated oil palm fiber ash (Ti:Ash). The catalyst was calcined at different temperature, i.e. 500 <sup>o</sup>C and 800 <sup>o</sup>C. The study was carried out in a one liter Borosilicate photoreactor equipped with mercury light of 365 nanometers for two hours with 400 rpm mixing and catalyst to seawater sample weight ratio of 1:400. The Chemical Oxygen Demand (COD), pH, dissolved oxygen (DO), turbidity and conductivity of the seawater were analyzed prior and after the testing. The fresh and spent catalysts were characterized via X-Ray Diffractogram (XRD and Nitrogen physisorption analysis. The calcination temperature significantly influenced the adsorption behaviour and photocatalytic activity. However, Ti:Ash which calcined at 800 <sup>o</sup>C has less photocatalytic activity. It might be because the surface of fiber ash was sintered after calcined at high temperature. The Ti:Ash catalyst that calcined at 500 <sup>o</sup>C was found to be the most effective catalyst in the desalination of seawater by reducing the salt concentration of more than 9 % compared to Ti:Ash calcined at 800 <sup>o</sup>C. It can be concluded that catalyst calcination at 500 °C has better character, performance and economically feasible catalyst for seawater desalination. Copyright © 2016 BCREC GROUP. All rights reserved</p><p><em>Received: 22<sup>nd</sup> January 2016; Revised: 23<sup>rd</sup> February 2016; Accepted: 23<sup>rd</sup> February 2016</em></p><strong>How to Cite:</strong> Kan, W.E., Roslan, J., Isha R. (2016). Effect of Calcination Temperature on Performance of Photocatalytic Reactor System for Seawater Pretreatment. <em>Bulletin of Chemical Reaction Engineering &amp; Catalysis</em>, 11 (2): 230-237 (doi:10.9767/bcrec.11.2.554.230-237)<p><strong>Permalink/DOI:</strong> http://dx.doi.org/10.9767/bcrec.11.2.554.230-237</p>


1986 ◽  
Vol 60 (2) ◽  
pp. 539-545 ◽  
Author(s):  
J. U. Raj ◽  
R. D. Bland ◽  
S. J. Lai-Fook

To study the mechanical effects of lung edema on the pulmonary circulation, we determined the longitudinal distribution of vascular resistance in the arteries, veins, and microvessels, and the distribution of blood flow in isolated blood-perfused rabbit lungs with varying degrees of edema. Active vasomotor changes were eliminated by adding papaverine to the perfusate. In three groups of lungs with either minimal [group I, mean wet-to-dry weight ratio (W/D) = 5.3 +/- 0.6 (SD), n = 7], moderate (group II, W/D = 8.5 +/- 1.2, n = 10), or severe (group III, W/D = 9.9 +/- 1.6, n = 5) edema, we measured by direct micropuncture the pressure in subpleural arterioles and venules (20–60 micron diam) and in the interstitium surrounding these vessels. We also measured pulmonary arterial and left atrial pressures and lung blood flow, and in four additional experiments we used radio-labeled microspheres to determine the distribution of blood flow during mild and severe pulmonary edema. In lungs with little or no edema (group I) we found that 33% of total vascular pressure drop was in arteries, 60% was in microvessels, and 7% was in veins. Moderate edema (group II) had no effect on total vascular resistance or on the vascular pressure profile, but severe edema (group III) did increase vascular resistance without changing the longitudinal distribution of vascular resistance in the subpleural microcirculation. Perivascular interstitial pressure relative to pleural pressure increased from 1 cmH2O in group I to 2 in group II to 4 in group III lungs.(ABSTRACT TRUNCATED AT 250 WORDS)


2010 ◽  
Vol 109 (2) ◽  
pp. 271-278 ◽  
Author(s):  
Matthew Coutsos ◽  
Javier A. Sala-Mercado ◽  
Masashi Ichinose ◽  
ZhenHua Li ◽  
Elizabeth J. Dawe ◽  
...  

Muscle metaboreflex activation during dynamic exercise induces a substantial increase in cardiac work and oxygen demand via a significant increase in heart rate, ventricular contractility, and afterload. This increase in cardiac work should cause coronary metabolic vasodilation. However, little if any coronary vasodilation is observed due to concomitant sympathetically induced coronary vasoconstriction. The purpose of the present study is to determine whether the restraint of coronary vasodilation functionally limits increases in left ventricular contractility. Using chronically instrumented, conscious dogs ( n = 9), we measured mean arterial pressure, cardiac output, and circumflex blood flow and calculated coronary vascular conductance, maximal derivative of ventricular pressure (dp/d tmax), and preload recruitable stroke work (PRSW) at rest and during mild exercise (2 mph) before and during activation of the muscle metaboreflex. Experiments were repeated after systemic α1-adrenergic blockade (∼50 μg/kg prazosin). During prazosin administration, we observed significantly greater increases in coronary vascular conductance (0.64 ± 0.06 vs. 0.46 ± 0.03 ml·min−1·mmHg−1; P < 0.05), circumflex blood flow (77.9 ± 6.6 vs. 63.0 ± 4.5 ml/min; P < 0.05), cardiac output (7.38 ± 0.52 vs. 6.02 ± 0.42 l/min; P < 0.05), dP/d tmax (5,449 ± 339 vs. 3,888 ± 243 mmHg/s; P < 0.05), and PRSW (160.1 ± 10.3 vs. 183.8 ± 9.2 erg·103/ml; P < 0.05) with metaboreflex activation vs. those seen in control experiments. We conclude that the sympathetic restraint of coronary vasodilation functionally limits further reflex increases in left ventricular contractility.


1996 ◽  
Vol 271 (4) ◽  
pp. H1384-H1393 ◽  
Author(s):  
Y. Ishibashi ◽  
J. Zhang ◽  
D. J. Duncker ◽  
C. Klassen ◽  
T. Pavek ◽  
...  

This study was performed to test the hypothesis that increases in myocardial oxygen consumption (MVo2) and myocardial contractile function during exercise are flow limited. Studies were performed in 15 chronically instrumented normal dogs. MVo2 and regional percent systolic wall thickening were measured during control conditions and during maximal vasodilation produced by infusion of adenosine (20-75 micrograms.kg-1.min-1) or adenosine combined with nitroglycerin (0.4 micrograms.kg-1.min-1; TNG) into the left anterior descending coronary artery during a three-stage graded treadmill exercise protocol. Adenosine and adenosine plus TNG significantly increased coronary blood flow by 298 +/- 26 and 306 +/- 24%, respectively, at rest and by 134 +/- 7 and 145 +/- 9%, respectively, during the heaviest level of exercise (each P < 0.01). Adenosine and adenosine plus TNG increased MVo2 at rest, but this was associated with a parallel increase in heart rate, so that MVo2 per beat was not significantly changed. Systolic wall thickening was also not changed by hyperperfusion during resting conditions. However, MVo2 per beat was increased by 12 +/- 4% with adenosine and by 13 +/- 5% with adenosine plus TNG during moderate exercise and by 23 +/- 5% with adenosine and by 27 +/- 4% with adenosine plus TNG during the heaviest level of exercise (each P < 0.05). Systolic thickening of the full left ventricular wall did not change during hyperperfusion, but thickening in the subepicardial layer was increased by 14 +/- 3% with adenosine and 18 +/- 3% with adenosine plus TNG during the heaviest level of exercise (each P < 0.05). There was no difference in wall thickening between adenosine and adenosine plus TNG. These findings imply that the increases in MVo2 which occur during exercise are limited by coronary blood flow.


1986 ◽  
Vol 250 (5) ◽  
pp. H778-H785 ◽  
Author(s):  
M. Akaishi ◽  
R. M. Schneider ◽  
R. J. Mercier ◽  
J. B. Agarwal ◽  
R. H. Helfant ◽  
...  

The quantitative effects of graded ischemia on the phases of contraction in ischemic and nonischemic myocardium were studied in 10 open-chest dogs. During progressive coronary stenosis, an index of the overall severity of ischemia, total myocardial blood flow deficit (TMFD), was measured using microspheres. Segment shortening (% delta L) during the isovolumic and ejection phases of systole in the ischemic and nonischemic zones was obtained with ultrasonic crystals. In the ischemic zone, total systolic and ejection phase % delta L decreased progressively as stenosis increased; isovolumic phase % delta L showed segment elongation (bulging) during mild ischemia, which was unchanged as ischemia became severe. Total % delta L in the nonischemic zone increased progressively with increasing stenosis, reaching 132 +/- 20% of the control value when TMFD was 24.8 +/- 6.5% of total expected left ventricular (LV) myocardial blood flow. The increase in total % delta L was entirely attributable to increased ejection % delta L and correlated with indices of preload (multivariate r = 0.65) and afterload (multivariate r = 0.62). Multiple linear regression analysis revealed that augmented contraction in the nonischemic zone was best described (multivariate r = 0.94) by a combination of four hemodynamic variables estimating LV preload and afterload, which correlated in turn with the overall severity of ischemia. Thus systolic bulging in the ischemic zone is primarily an isovolumic phase phenomenon that develops initially with mild ischemia. Little additional change occurs in the isovolumic phase as ischemic severity increases, although further reductions in shortening occur in the ejection phase.(ABSTRACT TRUNCATED AT 250 WORDS)


1977 ◽  
Vol 72 (5) ◽  
pp. 479-491 ◽  
Author(s):  
M. Nakamura ◽  
H. Matsuguchi ◽  
A. Mitsutake ◽  
Y. Kikuchi ◽  
A. Takeshita ◽  
...  

2012 ◽  
Vol 303 (10) ◽  
pp. H1245-H1254 ◽  
Author(s):  
Sebastian Rehberg ◽  
Yusuke Yamamoto ◽  
Linda Sousse ◽  
Eva Bartha ◽  
Collette Jonkam ◽  
...  

Vasopressin analogs are used as a supplement to norepinephrine in septic shock. The isolated effects of vasopressin agonists on sepsis-induced vascular dysfunction, however, remain controversial. Because V2-receptor stimulation induces vasodilation and procoagulant effects, a higher V1a- versus V2-receptor selectivity might be advantageous. We therefore hypothesized that a sole, titrated infusion of the selective V1a-agonist Phe2-Orn8-Vasotocin (POV) is more effective than the mixed V1a-/V2-agonist AVP for the treatment of vascular and cardiopulmonary dysfunction in methicillin resistant staphylococcus aureus pneumonia-induced, ovine sepsis. After the onset of hemodynamic instability, awake, chronically instrumented, mechanically ventilated, and fluid resuscitated sheep were randomly assigned to receive continuous infusions of either POV, AVP, or saline solution (control; each n = 6). AVP and POV were titrated to maintain mean arterial pressure above baseline − 10 mmHg. When compared with that of control animals, AVP and POV reduced neutrophil migration (myeloperoxidase activity, alveolar neutrophils) and plasma levels of nitric oxide, resulting in higher mean arterial pressures and a reduced vascular leakage (net fluid balance, chest and abdominal fluid, pulmonary bloodless wet-to-dry-weight ratio, alveolar and septal edema). Notably, POV stabilized hemodynamics at lower doses than AVP. In addition, POV, but not AVP, reduced myocardial and pulmonary tissue concentrations of 3-nitrotyrosine, VEGF, and angiopoietin-2, thereby leading to an abolishment of cumulative fluid accumulation (POV, 9 ± 15 ml/kg vs. AVP, 110 ± 13 ml/kg vs. control, 213 ± 16 ml/kg; P < 0.001 each) and an attenuated cardiopulmonary dysfunction (left ventricular stroke work index, PaO2-to-FiO2ratio) versus control animals. Highly selective V1a-agonism appears to be superior to unselective vasopressin analogs for the treatment of sepsis-induced vascular dysfunction.


Sign in / Sign up

Export Citation Format

Share Document