Localization of purine and pyrimidine nucleoside phosphorylases in heart, kidney, and liver

1980 ◽  
Vol 239 (6) ◽  
pp. H721-H730 ◽  
Author(s):  
R. Rubio ◽  
R. M. Berne

In isolated livers and kidneys perfused with Krebs-Henseleit solution, the relationship of the concentration of adenosine (Ado) to that of its degradation products inosine (Ino) and hypoxanthine (Hyp) in biliary, urinary, and venous effluents were determined. They revealed ratios of Hyp:Ado:Ino, 1.9:1:0.9, 0.7:1:0.6, and 1.3:1:0.5 for guinea pig biliary, guinea pig urinary, and rat urinary effluents, respectively, and their respective venous effluent were 58:1:29, 8.6:1:5.4, and 7.4:1:3.2. The greater proportion of Ino and Hyp in the venous effluents suggests active production in Ino and Hyp at the vessel wall. Purine nucleoside phosphorylase localization was determined histochemically and found most active in the cytoplasm of capillary endothelium and Kupffer cells. Thus, there is agreement between purine analysis and histochemical findings. The reliability of the histochemical technique was also tested by comparing activities of purine nucleoside phosphorylase (a cytoplasmic enzyme) and pyrmidine nucleoside phosphorylase (a nuclear enzyme) that catalyze similar reactions (nucleoside + inorganic phosphate in equilibrium base + ribose-1-phosphate) but with different base specificites and cellular localization, as indicated by cell fractionation studies. The histochemical results show that in contrast to the purine nucleoside phosphorylase, the pyrmidine specific enzyme was most active in the nuclei of endothelial and Kupffer cells. Thus, the technique discriminates between the two enzymes.

1967 ◽  
Vol 45 (3) ◽  
pp. 409-419 ◽  
Author(s):  
H. L. A. Tarr ◽  
Joan E. Roy

Three purine nucleoside phosphorylase preparations (isoenzymes) were obtained by ammonium sulfate fractionation and DEAE-cellulose chromatography of aqueous extracts of lingcod muscle. Dialysis, adsorption on alumina Cγ, and elution with 0.4 M phosphate buffer yielded further purification. The most active enzyme preparation had about 120 times the activity of initial extracts. It utilized hypoxanthine, 6-mercaptopurine, guanine, 8-azaguanine, xanthine, adenine, 2,6-diaminopurine and 6-methylpurine in presence of ribose 1-phosphate or deoxyribose 1-phosphate. Several substituted purines were not utilized and did not inhibit the reaction between hypoxanthine and the pentose phosphates. The Kmwith inosine as substrate was 3.2 × 10−6 M. A pyrimidine nucleoside phosphorylase, distinct from the purine nucleoside phosphorylase, occurred in the DEAE-cellulose fraction comprising one of the purine nucleoside phosphorylases. Its activity was much lower than that of the purine nucleoside phosphorylase preparations. Uridine and thymidine were the best substrates. Deoxyuridine was a poor substrate, and neither cytidine nor deoxycytidine was utilized. The equilibrium with all preparations was about 80% in favor of nucleoside formation. The purified enzymes were all destroyed by freezing.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 100
Author(s):  
Gaofei Liu ◽  
Tiantong Cheng ◽  
Jianlin Chu ◽  
Sui Li ◽  
Bingfang He

Purine nucleoside phosphorylases (PNPs) are promising biocatalysts for the synthesis of purine nucleoside analogs. Although a number of PNPs have been reported, the development of highly efficient enzymes for industrial applications is still in high demand. Herein, a new trimeric purine nucleoside phosphorylase (AmPNP) from Aneurinibacillus migulanus AM007 was cloned and heterologously expressed in Escherichia coli BL21(DE3). The AmPNP showed good thermostability and a broad range of pH stability. The enzyme was thermostable below 55 °C for 12 h (retaining nearly 100% of its initial activity), and retained nearly 100% of the initial activity in alkaline buffer systems (pH 7.0–9.0) at 60 °C for 2 h. Then, a one-pot, two-enzyme mode of transglycosylation reaction was successfully constructed by combining pyrimidine nucleoside phosphorylase (BbPyNP) derived from Brevibacillus borstelensis LK01 and AmPNP for the production of purine nucleoside analogs. Conversions of 2,6-diaminopurine ribonucleoside (1), 2-amino-6-chloropurine ribonucleoside (2), and 6-thioguanine ribonucleoside (3) synthesized still reached >90% on the higher concentrations of substrates (pentofuranosyl donor: purine base; 20:10 mM) with a low enzyme ratio of BbPyNP: AmPNP (2:20 μg/mL). Thus, the new trimeric AmPNP is a promising biocatalyst for industrial production of purine nucleoside analogs.


Author(s):  
Yan Wen ◽  
Xiaojia Li ◽  
Wenting Guo ◽  
Baixing Wu

Nucleotides metabolism is a fundamental process in all organisms. Two families of nucleoside phosphorylases (NP) that catalyze the phosphorolytic cleavage of the glycosidic bond in nucleosides have been found, including the trimeric or hexameric NP-I and dimeric NP-II family enzymes. Recently studies revealed another class of NP protein in E. coli named Pyrimidine/purine nucleoside phosphorylase (ppnP), which can catalyze the phosphorolysis of diverse nucleosides and yield D-ribose 1-phosphate and the respective free bases. Here, we solve the crystal structures of ppnP from E. coli and the other three species. Our studies revealed that the structure of ppnP belongs to the Rlmc-like cupin fold and showed as a rigid dimeric conformation. Detail analysis revealed a potential nucleoside binding pocket full of hydrophobic residues. And the residues involved in the dimer and pocket formation are all well conserved in bacteria. Since the cupin fold is a large superfamily in the biosynthesis of natural products, our studies provide the structural basis for understanding and the directed evolution of NP proteins.


2001 ◽  
Vol 183 (16) ◽  
pp. 4910-4913 ◽  
Author(s):  
K. Lecoq ◽  
I. Belloc ◽  
C. Desgranges ◽  
M. Konrad ◽  
B. Daignan-Fornier

ABSTRACT The yeast YLR209c (PNP1) gene encodes a protein highly similar to purine nucleoside phosphorylases. This protein specifically metabolized inosine and guanosine. Disruption ofPNP1 led to inosine and guanosine excretion in the medium, thus showing that PNP1 plays an important role in the metabolism of these purine nucleosides in vivo.


1990 ◽  
Vol 55 (12) ◽  
pp. 2987-2999 ◽  
Author(s):  
Katarina Šedivá ◽  
Ivan Votruba ◽  
Antonín Holý ◽  
Ivan Rosenberg

Purine nucleoside phosphorylase (PNP) from mouse leukemia cells L1210 was purified to homogeneity by a combination of ion exchange and affinity chromatography using AE-Sepharose 4B and 9-(p-succinylaminobenzyl)hypoxanthine as the matrix and the ligand, respectively. The native enzyme has a molecular weight of 104 000 and consists of three subunits of equal molecular weight of 34 000. The results of isoelectric focusing showed that the enzyme is considerably microheterogeneous over the pI-range 4.0-5.8 and most likely consists of eight isozymes. The temperature and pH-optimum of phosphorolysis, purine nucleoside synthesis and also of transribosylation is identical, namely 55 °C and pH 7.4. The transribosylation reaction proceeds in the presence of phosphate only. The following Km-values (μmol l-1) were determined for phosphorolysis: inosine 40, 2'-deoxyinosine 47, guanosine 27, 2'-deoxyguanosine 32. The Km-values (μmol l-1) of purine riboside and deoxyriboside synthesis are lower than the values for phosphorolysis (hypoxanthine 18 and 34, resp., guanine 8 and 11, resp.). An affinity lower by one order shows PNP for (-D-ribose-1-phosphate, (-D-2-deoxyribose-1-phosphate (Km = 200 μmol l-1 in both cases) and phosphate (Km = 805 μmol l-1). The substrate specificity of the enzyme was also studied: positions N(1), C(2) and C(8) are decisive for the binding of the substrate (purine nucleoside).


1986 ◽  
Vol 3 (4) ◽  
pp. 353-359 ◽  
Author(s):  
Ger T. Rijkers ◽  
Ben J. M. Zegers ◽  
Leo J. M. Spaapen ◽  
Derk H. Rutgers ◽  
John J. Roord ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document