Characterization of vasopressin receptors of rat urinary bladder and spleen

1986 ◽  
Vol 251 (1) ◽  
pp. H115-H120 ◽  
Author(s):  
M. Thibonnier ◽  
R. M. Snajdar ◽  
J. P. Rapp

By use of tritiated arginine-8-vasopressin (AVP), vasopressin specific binding sites were detected on Sprague-Dawley rat urinary bladder and spleen. In both tissues, one class of high-affinity binding sites was characterized with an equilibrium dissociation constant of 1.61 +/- 0.22 and 1.91 +/- 0.16 nM and a maximal binding capacity of 155 +/- 5 and 110 +/- 11 fmol/mg of protein, for bladder and spleen, respectively. In both tissues, several experimental arguments suggest that these receptors belong to the V1-vascular type: Highly significant correlations were found between the relative agonistic vasopressor activities of eight AVP agonists and their relative abilities to inhibit [3H]AVP binding to the receptors, whereas no such relationship existed when antidiuretic activities were considered. The same profile was also observed with the antagonistic activities of five AVP antagonists. Moreover, AVP (10(-12)-10(-5) M) did not modify the basal cyclic AMP production in either tissue. As cyclic AMP is known to respond to V2 stimulation, the data suggest that the receptors measured are the V1 type. In Dahl rats the receptor characteristics were modulated by salt diet. More interestingly, the number of spleen vasopressin binding sites was always lower in Dahl salt-resistant animals than in the Dahl salt-sensitive animals receiving either a sodium deficient or a 1% NaCl or an 8% NaCl-containing diet. The exploration of vasopressin receptors regulation should facilitate the comprehension of the role played by AVP in different models of experimental hypertension.

1985 ◽  
Vol 248 (1) ◽  
pp. C80-C87 ◽  
Author(s):  
M. Dunand ◽  
M. L. Aubert ◽  
J. P. Kraehenbuhl ◽  
B. C. Rossier

Established cell lines (TB-6c and TB-M) obtained by continuous culture of epithelial cells from toad Bufo marinus urinary bladder, which, in culture, maintained a high degree of functional differentiation, exhibited a significant number of high-affinity (KA = 1-2 X 10(10) M-1) binding sites detected both with radioiodinated (125I) ovine prolactin (oPRL) and human growth hormone (hGH). Binding capacity was higher in the case of TB-6c cells (7,573 +/- 581 sites/cell) than with the TB-M cells (1,160 +/- 87). Similarly, binding sites for oPRL were characterized on Xenopus laevis kidney-derived cell line A6. With oPRL used both as tracer and standard, significant cross-reaction was observed with hGH, less with human or rat prolactin (PRL), and none with human chorionic somatomammotropin, bovine growth hormone, and rat luteinizing hormone or follicle-stimulating hormones. B. marinus pituitary extracts completely displaced the binding of 125I-oPRL to toad bladder binding sites. This finding of specific sites for PRL on amphibian bladder and kidney cells confirms that PRL exerts specific biological actions for the control of electrolyte and water metabolism in the amphibians.


1995 ◽  
Vol 146 (3) ◽  
pp. 459-467 ◽  
Author(s):  
J A Calduch-Giner ◽  
A Sitjà-Bobadilla ◽  
P Álvarez-Pellitero ◽  
J Pérez-Sánchez

Abstract Receptors for GH were characterized in the head kidney of gilthead sea bream (Sparus aurata), using radioiodinated and biotinylated ligands. The specific binding of radiolabelled recombinant gilthead sea bream GH (rsbGH) to head kidney membrane preparations was dependent on membrane concentration. Salmon prolactin, salmon gonadotrophin and carp gonadotrophin did not compete for 125I-labelled rsbGH-binding sites. Unlabelled rsbGH competitively displaced 125I-labelled rsbGH bound to head kidney membranes. Scatchard plots were always linear, denoting the presence of a single class of binding sites. The binding affinity (Ka=2·7 × 109 m−1) was equivalent to that found in liver membrane preparations, but the binding capacity (2·5 ±0·30 fmol/mg protein) was 50- to 75-fold lower. To identify the cells which express the GH receptor, head kidney smears were incubated with biotinylated rsbGH, followed by incubation with an avidin–biotin complex conjugated to alkaline phosphatase. The reaction with the new-fuchsin substrate gave a red precipitate, showing a specific and intense labelling in erythroblasts, polychromatophilic erythroblasts and myeloblasts. Noticeable binding was observed in myelocytes and immature granulocytes, tending to disappear at the latter stages of granulocyte maturation. Light but appreciable binding was also observed in monocytes, lymphocytes and acidophilic erythroblasts, whereas it was completely absent in proerythrocytes and erythrocytes. The proliferative action of rsbGH and recombinant human IGF-I on in vitro cultures of head kidney cells was demonstrated by a 5-bromo-2′-deoxy-uridine immunoassay. To our knowledge, this is the first report that provides suitable evidence for a role of GH as a haemopoietic growth and differentiation factor in lower vertebrate species. Journal of Endocrinology (1995) 146, 459–467


1981 ◽  
Vol 241 (6) ◽  
pp. F605-F611 ◽  
Author(s):  
A. Doucet ◽  
A. I. Katz

To identify the site of mineralocorticoid action along the nephron, we measured the specific binding of [3H]aldosterone to nephron segments microdissected from aldosterone-deficient rabbits. Specific binding was defined as the difference between binding measured in the absence or in the presence of 2,000-fold excess of unlabeled hormone (in 10(-18) mol X cm tubule length-1 +/- SE). High specific binding capacity was found in the branched collecting tubule (108 +/- 4), the cortical collecting tubule (119 +/- 9), and the outer medullary collecting tubule (115 +/- 16), whereas specific binding was negligible in the proximal convoluted tubule (8 +/- 9), pars recta (2 +/- 6), medullary thick ascending limb (4 +/- 6), cortical thick ascending limb (6 +/- 2), and distal convoluted tubule (6 +/- 6). In cortical collecting tubules, Scatchard analysis of the specific [3H]aldosterone binding indicated a dissociation constant (KD) of 2.2 X 10(-9) M and a maximum number of binding sites of 157 X 10(-18) mol X cm tubule length-1. The steroid specificity was assessed from the competition of various steroids for [3H]aldosterone binding sites. Receptors from the cortical collecting tubule revealed the following sequence of affinities: aldosterone greater than DOCA greater than spironolactone greater than dexamethasone greater than 5 alpha-dihydrotestosterone = progesterone = 17 beta-estradiol, indicating that the binding sites in the collecting tubule are mineralocorticoid receptors. These results demonstrate significant [3H]aldosterone binding to receptors of high affinity and mineralocorticoid specificity only in the collecting tubule and suggest that this nephron segment is the target site of mineralocorticoid action in the rabbit kidney.


1978 ◽  
Vol 88 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Michael Mayer ◽  
Fred Rosen

ABSTRACT [3H]Dexamethasone binding capacity in rat muscle cytosol was determined after various endocrine manipulations in an attempt to identify factors which might regulate the level of the cytoplasmic hormone receptor protein. Hypophysectomy and adrenalectomy markedly increased the specific binding of [3H]dexamethasone in skeletal muscle cytosol, while implantation of the MtT tumour which secretes ACTH and growth hormone, as well as treatment with glucocorticoids reduced the glucocorticoid specific binding. Since the effects of hypophysectomy and the MtT tumour depend on the presence of the adrenals, they appear to be mediated via changes in circulating glucocorticoid level. Alloxan- or streptozotocin-induced diabetes caused only a slight reduction in the binding of [3H]dexamethasone in muscle, suggesting that the enhanced responsiveness to glucocorticoids in diabetes is not due to increased glucocorticoid receptor activity. There is a sex-dependent effect on binding, female rats having a higher concentration of binding sites. Furthermore, treatment with the synthetic androgen fluoxymesterone or with glucocorticoids reduces binding, while oestradiol-17β enhances it. The changes in glucocorticoid binding capacity induced by the various endocrine manipulations appear to reflect mainly changes in receptor concentration rather than occupancy, since the binding assays were preformed after a suitable time allowance for removal of the administered hormones by metabolism.


2017 ◽  
Vol 176 (4) ◽  
pp. 393-404 ◽  
Author(s):  
María del Mar Grasa ◽  
José Gulfo ◽  
Núria Camps ◽  
Rosa Alcalá ◽  
Laura Monserrat ◽  
...  

ObjectiveSex hormone-binding globulin (SHBG) binds and transports testosterone and estradiol in plasma. The possibility that SHBG is a mixture of transporting proteins has been postulated. We analyzed in parallel the effects of obesity status on the levels and binding capacity of circulating SHBG and their relationship with testosterone and estradiol.DesignAnthropometric measures and plasma were obtained from apparently healthy young (i.e. 35 ± 7 years) premenopausal women (n = 32) and men (n = 30), with normal weight and obesity (BMI >30 kg/m2).MethodsSHBG protein (Western blot), as well as the plasma levels of testosterone, estradiol, cortisol and insulin (ELISA) were measured. Specific binding of estradiol and testosterone to plasma SHBG was analyzed using tritium-labeled hormones.ResultsSignificant differences in SHBG were observed within the obesity status and gender, with discordant patterns of change in testosterone and estradiol. In men, testosterone occupied most of the binding sites. Estrogen binding was much lower in all subjects. Lower SHBG of morbidly obese (BMI >40 kg/m2) subjects affected testosterone but not estradiol. The ratio of binding sites to SHBG protein levels was constant for testosterone, but not for estradiol. The influence of gender was maximal in morbid obesity, with men showing the highest binding/SHBG ratios.ConclusionsThe results reported here are compatible with SHBG being a mixture of at least two functionally different hormone-binding globulins, being affected by obesity and gender and showing different structure, affinities for testosterone and estradiol and also different immunoreactivity.


1981 ◽  
Vol 88 (3) ◽  
pp. 339-349 ◽  
Author(s):  
J. BÍRÓ

Globulin preparations (41) from patients with Graves's disease (positive to thyroid stimulating immunoglobulins; TSI) and 12 from healthy persons (TSI-negative) were tested for their specific thyrotrophin (TSH)-binding properties. Globulins from both groups possessed binding sites for 131I-labelled TSH. The mean dissociation constant (Kd) was 6·8 pmol/l per mg globulin and the maximum specific binding (Bmax) was 3·0 pmol/mg globulin per 1 for the TSI-negative control group. Twenty-four (58·5%) globulin preparations from the TSI-positive group had similar TSH-binding characteristics with mean Kd of 7·2 pmol/l per mg globulin and Bmax of 3·6 pmol/mg globulin per 1 (A-type binding) but the remaining 17 (41·5%) bound TSH in a different fashion with Kd of 71·5 pmol/l per mg globulin and Bmax of 13·6 pmol/mg globulin per 1 (B-type binding). Both types of specific TSH binding reached the maximal level within 1 h of incubation and had an optimum pH of 7–8. There was a linear correlation between the amount of bound TSH and the globulin content of the samples. Both types of binding were reversible by the addition of an excess of TSH and gonadotrophins, ACTH, prolactin and insulin competed with TSH for the binding sites only when in relatively high concentrations. The binding sites were associated with macromolecules; they emerged with the void volume after chromatography on Sephadex G-200 and migrated with immunoglobulin G (IgG) on paper electrophoresis. The binding capacity of the globulin preparations could be decreased by preincubation with antiserum to human IgG or with human thyroid membranes.


1985 ◽  
Vol 228 (3) ◽  
pp. 761-764 ◽  
Author(s):  
G N Ciccia-Torres ◽  
J M Dellacha

Specific binding of 125I-labelled human somatotropin was demonstrated in isolated hepatocytes from male mice. In the presence of divalent cations (Ca2+ and Mg2+) the binding of 125I-labelled human somatotropin was competitive with ovine prolactin. Scatchard analysis of competition data indicated a KD of 1.4 +/- 0.2 nM and a binding capacity of 13 000 +/- 2000 sites/cell. In the absence of divalent cations and in the presence of EDTA, human and bovine somatotropins were found to be equally effective to displace bound 125I-labelled human somatotropin, while ovine prolactin showed a weak competition. In this case, the binding capacity was 8400 +/- 1500 sites/cell and the KD was 1.1 +/- 0.1 nM.


1977 ◽  
Vol 161 (3) ◽  
pp. 653-665 ◽  
Author(s):  
S O Døskeland ◽  
P M Ueland ◽  
H J Haga

Inorganic salts, several proteins and traces of protein precipitants were tested to find out by what mechanisms they modulate the binding of cyclic [3H]AMP to protein kinase (ATP-protein phosphotransferase; EC 2.7.1.37). The separation of free and bound cyclic AMP by (NH4)2SO4 precipitation was unaffected by the above agents and was more reliable than the Millipore filtration technique. Several binding sites for cyclic AMP were revealed in adrenal-cortex extract. When this extract was used as binding reagent in an assay for cyclic AMP, the standard curve was distorted in the presence of KCl because the salt affected the different binding sites to a varying extent. At high ionic strenth the protein kinase isoenzyme I dissociated and showed an extraordinarily high affinity for cyclic AMP. Trichloroacetate and perchlorate at very low concentrations were able to dissociate the protein kinase and modulate its binding characteristics as well. A progressive decrease in the cyclic AMP-binding capacity occurred on prolonged incubations. The binding protein was protected against inactivation by 2-mercaptoethanol, EDTA and several proteins. It was more resistant to denaturation when complexed to cyclic AMP. The enhancement of cyclic AMP binding by bovine serum albumin was investigated in some detail and appeared to be a pure stabilizing effect. It is proposed that the competitive-binding assays for cyclic AMP based on protein kinase be conducted at high ionic strength and in the presence of stabilizers (protein, EDTA, 2-mercaptoethanol). The interference from agents that may dissociate the protein kinase or influence its stability will thus be decreased.


1999 ◽  
Vol 8 (1) ◽  
pp. 53-62 ◽  
Author(s):  
H. S. Euzger ◽  
R. J. Flower ◽  
N. J. Goulding ◽  
M. Perretti

Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN). These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.


1983 ◽  
Vol 244 (1) ◽  
pp. E72-E82 ◽  
Author(s):  
J. Penit ◽  
M. Faure ◽  
S. Jard

Rat aortic smooth muscle cells were isolated and maintained in primary culture. After 2-3 days, cells recovered their contractile phenotype and could be induced to contract in response to vasopressin and angiotensin II. Vasopressin- and angiotensin-specific binding sites were detected on these cells, using tritiated Lys8-vasopressin, Asn1-Val5-angiotensin II, and Sarc1-Ile8-angiotensin II. Vasopressin binding sites had Kd values of 30 and 12 nM for Lys8-and Arg8-vasopressin, respectively, and a maximal binding capacity of 25,000 sites/cell. They displayed several of the expected characteristics of vasopressin receptors involved in the vasopressor response in vivo. A highly significant correlation was found between the relative agonistic or antagonistic vasopressor potencies of a series of vasopressin structural analogues and their relative abilities to inhibit [3H]vasopressin binding to aortic smooth muscle cells. Specific binding sites for Asn1-Val5-angiotensin II and Sarc1-Ile8-angiotensin II had the following characteristics: Kd = 2.3 and 1.3 nM, respectively; maximal capacity: 50,000 sites/cell. Vasopressin and angiotensin did not modify the intracellular cyclic AMP content of aortic smooth muscle cells.


Sign in / Sign up

Export Citation Format

Share Document