Effect of tetramethyl pyrazine on L-type calcium channel in rat ventricular myocytes

2001 ◽  
Vol 79 (7) ◽  
pp. 621-626 ◽  
Author(s):  
Lu-Yun Zou ◽  
Xue-Mei Hao ◽  
Guang-Qing Zhang ◽  
Mei Zhang ◽  
Ji-Hong Guo ◽  
...  

To elucidate possible ionic mechanisms of antimyocardial ischemia and antiarrythmia of tetramethyl pyrazine (TP), we studied L-type Ca2+ currents (ICa.L) in adult rat ventricular myocytes using the whole-cell patch-clamp technique. The results showed: (i) under physiological conditions, 0.25 mmol/L TP decreased amplitude of ICa.L to 60.6% and this inhibition was increased with increasing concentration of TP. ID50 was 0.20 mmol/L. (ii) The Ca2+-antagonistic effect of TP was voltage-dependent. A marked negative shift of the steady-state inactivation curve was observed with long (10 s) conditioning prepulses, but not with short (350 ms) ones. (iii) The time course of inhibition during TP treatment was increased with an increase in drug concentration, and recovery from TP-induced inactivation of ICa.L was slower than in control cases. (iv) Tonic block and use-dependent block with TP treatment, which was induced by increasing the frequency of stimulation, occurred. We suggest that TP inhibits the ICa.L mainly by binding to inactivated Ca2+ channels. The high affinity of TP for the inactivated state of ICa.L may play an important role in developing therapies for pathological conditions.Key words: Tetramethyl pyrazine, L-type calcium current, rat ventricular myocytes.

1993 ◽  
Vol 264 (4) ◽  
pp. H1315-H1318 ◽  
Author(s):  
A. P. Williamson ◽  
R. H. Kennedy ◽  
E. Seifen ◽  
J. P. Lindemann ◽  
J. R. Stimers

The purpose of this study was to determine if myocardial alpha 1a-and/or alpha 1b-adrenoceptors are involved in the increase in Na-K pump current (Ip) elicited by alpha 1-adrenergic agonists. Single rat ventricular myocytes were isolated by enzymatic disaggregation. The whole cell patch-clamp technique was used to examine dose-dependent effects of phenylephrine (PE) on holding current (Ih) and to determine whether observed actions were mediated via alpha 1a-or alpha 1b-adrenergic receptors. To minimize the contribution of transsar-colemmal currents other than Ip to Ih, membrane voltage was held constant -40 mV, and cells were maintained in a Ca-free perfusate containing 1 mM Ba and 0.1 mM Cd. All experiments were conducted in the presence of 3 microM nadolol. PE elicited dose-dependent increases in Ih, with a peak effect of 0.57 +/- 0.03 pA/pF observed at 30 microM. The response to PE was dose dependently inhibited by prazosin and chloroethylclonidine and was totally eliminated by 1 mM ouabain. When used at doses selective for the alpha 1a-subtype, WB4101 failed to significantly antagonize the action of PE. These data suggest that the observed alpha 1-adrenoceptor-mediated increase in Ih in isolated rat ventricular myocytes is the result of an increase in Ip effected via stimulation of alpha 1b-adrenergic receptors.


2000 ◽  
Vol 278 (1) ◽  
pp. H50-H59 ◽  
Author(s):  
J. T. Hulme ◽  
C. H. Orchard

The effect of acidosis on the transient outward K+ current ( Ito ) of rat ventricular myocytes has been investigated using the perforated patch-clamp technique. When the holding potential was −80 mV, depolarizing pulses to potentials positive to −20 mV activated Ito in subepicardial cells but activated little Ito in subendocardial cells. Exposure to an acid solution (pH 6.5) had no significant effect on Ito activated from this holding potential in either subepicardial or subendocardial cells. When the holding potential was −40 mV, acidosis significantly increased Ito at potentials positive to −20 mV in subepicardial cells but had little effect on Ito in subendocardial cells. The increase in Ito in subepicardial cells was inhibited by 10 mM 4-aminopyridine. In subepicardial cells, acidosis caused a +8.57-mV shift in the steady-state inactivation curve. It is concluded that in subepicardial rat ventricular myocytes acidosis increases the amplitude of Ito as a consequence of a depolarizing shift in the voltage dependence of inactivation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Pinya Li ◽  
Qiongtao Song ◽  
Tao Liu ◽  
Zhonglin Wu ◽  
Xi Chu ◽  
...  

Cinobufagin (CBG), a major bioactive ingredient of the bufanolide steroid compounds of Chan Su, has been widely used to treat coronary heart disease. At present, the effect of CBG on the L-type Ca2+current (ICa-L) of ventricular myocytes remains undefined. The aim of the present study was to characterize the effect of CBG on intracellular Ca2+([Ca2+]i) handling and cell contractility in rat ventricular myocytes. CBG was investigated by determining its influence onICa-L, Ca2+transient, and contractility in rat ventricular myocytes using the whole-cell patch-clamp technique and video-based edge-detection and dual-excitation fluorescence photomultiplier systems. The dose of CBG (10−8 M) decreased the maximal inhibition of CBG by 47.93%. CBG reducedICa-Lin a concentration-dependent manner with an IC50of 4 × 10−10 M, upshifted the current-voltage curve ofICa-L, and shifted the activation and inactivation curves ofICa-Lleftward. Moreover, CBG diminished the amplitude of the cell shortening and Ca2+transients with a decrease in the time to peak (Tp) and the time to 50% of the baseline (Tr). CBG inhibited L-type Ca2+channels, and reduced[Ca2+]iand contractility in adult rat ventricular myocytes. These findings contribute to the understanding of the cardioprotective efficacy of CBG.


1995 ◽  
Vol 268 (2) ◽  
pp. C339-C349 ◽  
Author(s):  
S. Liu ◽  
K. D. Schreur

The effect and possible signal transduction pathway of interleukin-1 beta (IL-1 beta) on the L-type Ca2+ current (ICa,L) in cultured adult rat ventricular myocytes were examined using whole cell patch-clamp techniques. When myocytes were internally dialyzed with a solution containing GTP, IL-1 beta caused a concentration-dependent decrease in the peak ICa,L (Ba2+ as the charge carrier). IL-1 beta did not significantly alter the voltage dependence of the peak ICa,L nor the steady-state inactivation and activation, but did slightly slow the rate of inactivation. In myocytes dialyzed with solutions without GTP or including guanosine 5'-O-(2-thiodiphosphate) to replace GTP, IL-1 beta had no effect on ICa,L. In contrast, when guanosine 5'-O-(3-thiotriphosphate) was used to replace GTP, the suppression of ICa,L induced by IL-1 beta remained. Preincubation of myocytes with pertussis toxin (PTX), which completely abolished the acetylcholine effect on isoproterenol-stimulated ICa,L, had no effect on the inhibitory action of IL-1 beta on ICa,L. We conclude that in cultured rat ventricular myocytes, IL-1 beta suppresses ICa,L via a PTX-insensitive G protein.


1996 ◽  
Vol 270 (2) ◽  
pp. C655-C662 ◽  
Author(s):  
K. D. Schreur ◽  
S. Liu

The present study examines the effect of 1,2-dioctanoyl-sn-glycerol (DiC8), a diacylglycerol analogue, on L-type Ca2+ current (ICa,L) in adult rat ventricular myocytes using whole cell patch-clamp techniques. Extracellular application of DiC8 (1-10 microM) resulted in a concentration-dependent inhibition of peak ICa,L (half-maximum inhibitory concentration = 2.2 microM). Results obtained from the current-voltage relationship showed that DiC8 decreased the slope conductance. In addition, DiC8 increased the rate of Ba2+ current inactivation and caused a hyperpolarizing shift in the steady-state inactivation by 6 mV and a decrease in the slope factor. The DiC8-induced inhibition of ICa,L was neither mimicked by activation of protein kinase C (PKC) with 100 nM phorbol 12-myristate 13-acetate (PMA) no prevented by inhibition of PKC with 30 microM H-7, 100 nM staurosporine, or 24-h pretreatment with PMA. These results suggest that in rat ventricular myocytes 1) 1,2-sn-diacylglycerol (DAG) inhibits ICa,L, possibly by facilitating channel inactivation and decreasing channel availability and 2) this inhibitory effect of DAG is independent of PKC activation.


2009 ◽  
pp. 807-815 ◽  
Author(s):  
L Hu ◽  
J Ma ◽  
P Zhang ◽  
J Zheng

Hypotonic solution alters ion channel activity, but little attention has been paid to voltage-dependent sodium channels. The aim of this study was to investigate the effects of hypotonic solution on transient sodium currents (INaT) and persistent sodium currents (INaP). We also explored whether the intracellular signal transduction systems participated in the hypotonic modifications of sodium currents. INaT and INaP were recorded by means of whole-cell patch-clamp technique in isolated rat ventricular myocytes. Our results revealed that hypotonic solution reduced INaT and simultaneously augmented INaP with the occurrence of interconversion between INaT and INaP. Hypotonic solution shifted steady-state inactivation to a more negative potential, prolonged the time of recovery from inactivation, and enhanced intermediate inactivation (IIM). Ruthenium red (RR, inhibitor of TRPV4), bisindolylmaleimide VI (BIM, inhibitor of PKC), Kn-93 (inhibitor of Ca/CaMKII) and BAPTA (Ca2+-chelator) inhibited the effects of hypotonic solution on INaT and INaP. Therefore we conclude that hypotonic solution inhibits INaT, enhances INaP and IIM with the effects being reversible. TRPV4 and intracellular Ca2+, PKC and Ca/CaMKII participate in the hypotonic modifications of sodium currents.


1990 ◽  
Vol 258 (2) ◽  
pp. H452-H459 ◽  
Author(s):  
N. Shepherd ◽  
M. Vornanen ◽  
G. Isenberg

We describe the first observations of isolated mammalian guinea pig ventricular myocytes that combine measurements of contractile force with the voltage-clamp method. The myocytes were attached by poly-L-lysine to the beveled ends of a pair of thin glass rods having a compliance of 0.76 m/N. The contractile force of a cell caused a 1- to 3-microm displacement of the rods; the motion of which was converted to an output voltage by phototransistors. By the use of the whole cell patch-clamp technique, the cells were depolarized at 1 Hz with 200-ms-long clamp pulses from -45 to +5 mV (35 degrees C, 3.6 mM CaCl2). Isometric force began after a latency of 7 +/- 2 ms, peaked at 93 +/- 21 ms, and relaxed (90%) at 235 +/- 63 ms. The time course of force was always faster than that of isotonic shortening (time to peak 154 +/- 18 ms). With 400-ms-long depolarizations, a tonic component was recorded as either sustained force or sustained shortening that decayed on repolarization. Substitution of Ca by Sr in the bath increased the inward current through Ca channels but slowed down the time course of force development. The results are consistent with the hypothesis that activator calcium derives mainly from internal stores and that Ca release needs Ca entry through channels.


1991 ◽  
Vol 261 (2) ◽  
pp. C310-C318 ◽  
Author(s):  
Z. S. Agus ◽  
I. D. Dukes ◽  
M. Morad

The modulation of the transient outward K+ current (Ito) by divalent cations was studied in enzymatically isolated rat ventricular myocytes with the whole cell patch-clamp technique. At holding potentials negative to -70 mV, 1 mM Cd2+ suppressed Ito, whereas, at potentials positive to -50 mV, the current was augmented. These effects were caused by shifts in the voltage dependence of both activation and inactivation of Ito toward more positive potentials. Cd2+ also slowed the activation kinetics of Ito by shifting the voltage dependence of its rate of activation, but the rate of inactivation was unaffected. Other divalent cations produced similar shifts but at markedly different concentrations. Thus, in the millimolar range, a rightward shift of approximately 20 mV was produced by 3 Co2+, 5 Ni2+, and 10 Ca2+, whereas 10 microM concentrations of Cu2+ and Zn2+ produced equivalent shifts. Similar effects were seen in hippocampal neurons with micromolar concentrations of Zn2+. Thus divalent cations have marked and specific effects on the kinetics and voltage dependence of Ito and may serve as a regulatory mechanism in its activation, particularly in cells with resting potentials positive to -60 mV.


2008 ◽  
Vol 86 (9) ◽  
pp. 620-625 ◽  
Author(s):  
Ru-xing Wang ◽  
Wen-ping Jiang

To investigate the effects of S- and R-amlodipine (Aml) on action potential (AP) and L-type calcium channel current (ICa-L), the whole-cell patch-clamp technique was used on rat ventricular myocytes to record AP, ICa-L, peak currents, steady-state activation currents, steady-state inactivation currents, and recovery currents from inactivation with S-Aml and R-Aml at various concentrations. Increasing concentrations of S-Aml gradually shortened AP durations (APDs). At concentrations of 0.1, 0.5, 1, 5, and 10 μmol/L, S-Aml blocked 1.5% ± 0.2%, 25.4% ± 5.3%, 65.2% ± 7.3%, 78.4% ± 8.1%, and 94.2% ± 5.0% of ICa-L, respectively (p < 0.05), and the half-inhibited concentration was 0.62 ± 0.12 µmol/L. Current–voltage curves were shifted upward; steady-state activation and inactivation curves were shifted to the left. At these concentrations of S-Aml, the half-activation voltages were –16.01 ± 1.65, –17.61 ± 1.60, –20.17 ± 1.46, –21.87 ± 1.69, and –24.09 ± 1.87 mV, respectively, and the slope factors were increased (p < 0.05). The half-inactivation voltages were –27.16 ± 4.48, –28.69 ± 4.52, –31.19 ± 4.17, –32.63 ± 4.34, and –35.16 ± 4.46 mV, respectively, and the slope factors were increased (p < 0.05). The recovery times from inactivation of S-Aml were prolonged (p < 0.05). In contrast, R-Aml had no effect on AP and ICa-L (p > 0.05) at the concentrations tested. Thus, only S-Aml has calcium channel blockade activity, whereas R-Aml has none of the pharmacologic actions associated with calcium channel blockers.


1993 ◽  
Vol 101 (4) ◽  
pp. 603-626 ◽  
Author(s):  
D L Campbell ◽  
Y Qu ◽  
R L Rasmusson ◽  
H C Strauss

Block of the calcium-independent transient outward K+ current, I(to), by 4-aminopyridine (4-AP) was studied in ferret right ventricular myocytes using the whole cell patch clamp technique. 4-AP reduces I(to) through a closed state blocking mechanism displaying "reverse use-dependent" behavior that was inferred from: (a) development of tonic block at hyperpolarized potentials; (b) inhibition of development of tonic block at depolarized potentials; (c) appearance of "crossover phenomena" in which the peak current is delayed in the presence of 4-AP at depolarized potentials; (d) relief of block at depolarized potentials which is concentration dependent and parallels steady-state inactivation for low 4-AP concentrations (V1/2 approximately -10 mV in 0.1 mM 4-AP) and steady-state activation at higher concentrations (V1/2 = +7 mV in 1 mM 4-AP, +15 mV in 10 mM 4-AP); and (e) reassociation of 4-AP at hyperpolarized potentials. No evidence for interaction of 4-AP with either the open or inactivated state of the I(to) channel was obtained from measurements of kinetics of recovery and deactivation in the presence of 0.5-1.0 mM 4-AP. At hyperpolarized potentials (-30 to -90 mV) 10 mM 4-AP associates slowly (time constants ranging from approximately 800 to 1,300 ms) with the closed states of the channel (apparent Kd approximately 0.2 mM). From -90 to -20 mV the affinity of the I(to) channel for 4-AP appears to be voltage insensitive; however, at depolarized potentials (+20 to +100 mV) 4-AP dissociates with time constants ranging from approximately 350 to 150 ms. Consequently, the properties of 4-AP binding to the I(to) channel undergo a transition in the range of potentials over which channel activation and inactivation occurs (-30 to +20 mV). We propose a closed state model of I(to) channel gating and 4-AP binding kinetics, in which 4-AP binds to three closed states. In this model 4-AP has a progressively lower affinity as the channel approaches the open state, but has no intrinsic voltage dependence of binding.


Sign in / Sign up

Export Citation Format

Share Document