Voltage-dependent K+ current in capillary endothelial cells isolated from guinea pig heart

1999 ◽  
Vol 277 (1) ◽  
pp. H119-H127 ◽  
Author(s):  
Michael Dittrich ◽  
Jürgen Daut

Capillary fragments were isolated from guinea pig hearts, and their electrical properties were studied using the perforated-patch and cell-attached mode of the patch-clamp technique. A voltage-dependent K+ current was discovered that was activated at potentials positive to −20 mV and showed a sigmoid rising phase. For depolarizing voltage steps from −128 to +52 mV, the time to peak was 71 ± 5 ms (mean ± SE) and the amplitude of the current was 3.7 ± 0.5 pA/pF in the presence of 5 mM external K+. The time course of inactivation was exponential with a time constant of 7.2 ± 0.5 s at +52 mV. The current was blocked by tetraethylammonium (inhibitory constant ∼3 mM) but was not affected by charybdotoxin (1 μM) or apamin (1 μM). In the cell-attached mode, depolarization-activated single-channel currents were found that inactivated completely within 30 s; the single-channel conductance was 12.3 ± 2.4 pS. The depolarization-activated K+current described here may play a role in membrane potential oscillations of the endothelium.

1990 ◽  
Vol 258 (2) ◽  
pp. H452-H459 ◽  
Author(s):  
N. Shepherd ◽  
M. Vornanen ◽  
G. Isenberg

We describe the first observations of isolated mammalian guinea pig ventricular myocytes that combine measurements of contractile force with the voltage-clamp method. The myocytes were attached by poly-L-lysine to the beveled ends of a pair of thin glass rods having a compliance of 0.76 m/N. The contractile force of a cell caused a 1- to 3-microm displacement of the rods; the motion of which was converted to an output voltage by phototransistors. By the use of the whole cell patch-clamp technique, the cells were depolarized at 1 Hz with 200-ms-long clamp pulses from -45 to +5 mV (35 degrees C, 3.6 mM CaCl2). Isometric force began after a latency of 7 +/- 2 ms, peaked at 93 +/- 21 ms, and relaxed (90%) at 235 +/- 63 ms. The time course of force was always faster than that of isotonic shortening (time to peak 154 +/- 18 ms). With 400-ms-long depolarizations, a tonic component was recorded as either sustained force or sustained shortening that decayed on repolarization. Substitution of Ca by Sr in the bath increased the inward current through Ca channels but slowed down the time course of force development. The results are consistent with the hypothesis that activator calcium derives mainly from internal stores and that Ca release needs Ca entry through channels.


1987 ◽  
Vol 253 (1) ◽  
pp. H210-H214
Author(s):  
M. Horie ◽  
H. Irisawa

Rectifying properties of the acetylcholine (ACh)-sensitive K+ channels were studied using a patch-clamp method in single atrial cells prepared enzymatically from adult guinea pig hearts. In the presence of micromolar concentration of nonhydrolyzable guanosine 5'-triphosphate (GTP) analogue 5'-guanylylimidodiphosphate (GppNHp) and the absence of Mg2+ at the inner surface of patch membrane [( Mg2+]i), the channel activity recovered in inside-out patch condition. The single channel conductance became ohmic between -80 and +80 mV (symmetrical 150 mM K+ solutions). The rapid relaxation of outward single channel currents was disclosed on a depolarization. [Mg2+]i blocked the outward current through the channel dose- and voltage-dependently and also induced a dose-dependent increase in the channel activation. The apparent paradoxical role of [Mg2+]i is important for the cholinergic control in the heart; voltage-dependent Mg block ensures a low K+ conductance of cell membrane at the plateau of action potentials during the exposure to ACh, thereby slowing the heart rate without unfavorable shortening of the action potentials.


1993 ◽  
Vol 264 (6) ◽  
pp. G1066-G1076 ◽  
Author(s):  
T. Shimada

The voltage-dependent Ca2+ current was studied in enzymatically dispersed guinea pig gallbladder smooth muscle cells using the whole cell patch-clamp technique. Depolarizing voltage (V) steps induced an inward current (I) that was carried by Ca2+. The threshold potential was -40 to -30 mV, the maximal current was observed at +10 to +20 mV, and the reversal potential was around +80 mV. I-V curves obtained with holding potentials of -80 and -40 mV were not significantly different. This current had a high sensitivity to dihydropyridine drugs, and the Ba2+ or Sr2+ current was larger than the Ca2+ current. Activation was accelerated by increasing the membrane potential. In general, the time course of decay was well fitted by the sum of two exponentials, but consideration of a third (ultra-slow) decay component was also necessary when the current generated by a 2-s command pulse was analyzed. Superimposition of activation and inactivation curves showed the presence of a significant window current. Carbachol suppressed the Ca2+ current only when the pipette contained a low concentration of ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. These results show that the L-type Ca2+ current is dominant in gallbladder smooth muscle cells and may contribute to excitation-contraction coupling.


1993 ◽  
Vol 265 (5) ◽  
pp. C1258-C1265 ◽  
Author(s):  
K. Benndorf ◽  
C. Biskup ◽  
M. Friedrich

Voltage-dependent properties of Na-Ca exchange current were revealed with the patch-clamp technique in Ca(2+)-overloaded guinea pig ventricular myocytes in the whole cell configuration. With the assumption that the transient inward current (Iti) is mediated by the Na-Ca exchanger, oscillations of internal Ca2+ concentration ([Ca2+]i) were used to investigate voltage-dependent kinetics of exchange current differences at two [Ca2+]i values. After Iti was elicited by clamping from -45 mV to basic pulses of +10 mV, pairs of equipotential short test pulses were applied during the basic pulse at both the phase of low [Ca2+]i (between two neighboring Iti values) and the phase of high [Ca2+]i (at the peak of Iti). The test pulses were short enough to leave the time course of Iti during the basic pulse approximately unchanged, which allowed study of the voltage dependence of the respective current differences without disturbing the underlying oscillation of [Ca2+]i. The current differences were inward at all potentials between -140 and +70 mV, started from an equal initial value, and obeyed characteristic voltage-dependent time courses: hyperpolarization to potentials negative to -70 mV caused an initial current increase, which was followed by a decay to very small amplitudes or zero with a decay time constant decreasing toward hyperpolarization e-fold per 45.6 mV. Depolarizing pulses caused a decay of the current differences to smaller levels. Respective current differences formed during a slowly decaying current component, following the Ca current spike, showed equal voltage-dependent properties. This indicates that the slowly decaying current component is preferentially also carried by the Na-Ca exchanger.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 259 (4) ◽  
pp. H1222-H1229 ◽  
Author(s):  
B. Lewartowski ◽  
R. G. Hansford ◽  
G. A. Langer ◽  
E. G. Lakatta

The relationship between the ability of sarcoplasmic reticulum (SR) to accumulate and retain Ca2+ and the electrically stimulated contractions (ESCs) of isolated cells from guinea pig ventricular myocardium was investigated. Caffeine contractures or rapid cooling contractures were used as a relative measure of the SR Ca2+ content. Depletion of SR Ca2+ by short exposure to caffeine (15 mM) or by prolonged rest resulted in a reduction of the amplitude of the ESCs by 83 +/- 14 and 65 +/- 11% (means +/- SD), respectively. This result points to SR as a major source of the Ca2+ that activates contraction. However, depriving the SR of the ability to retain Ca2+ by means of prolonged (up to 75 min) exposure to 0.1 microM ryanodine (as shown by the absence of contractile response to caffeine or cooling) did not prevent an ESC of nearly normal amplitude (81 +/- 24% control), albeit with a reduced contraction velocity and a time to peak contraction prolonged by 51 +/- 11%. Additionally, while rest decay of ESCs was present after ryanodine treatment, the time for the ESCs to recover their steady-state amplitude was prolonged at least twofold. Thus, in contrast with the normal guinea pig cells, ESCs of the myocytes exposed to ryanodine are controlled by sarcolemmal processes. This change in the state of excitation-contraction coupling results mainly in modification of the time course of the ESCs and of the time course of the response of the cells to the change in the rate of stimulation.


1997 ◽  
Vol 272 (1) ◽  
pp. C240-C253 ◽  
Author(s):  
Y. Waniishi ◽  
R. Inoue ◽  
Y. Ito

The effects of hypotonic cell swelling (HCS) on muscarinic receptor-activated cationic current in guinea pig ileal smooth muscle were investigated by the whole cell patch-clamp technique. With nystatin-perforated recording, reduced external tonicity from 312 to 262 mosM caused cell swelling but hardly affected the membrane currents activated by depolarization, such as outward-rectifying K and voltage-dependent Ca currents. In contrast, the inward current evoked by carbachol at -60 mV was greatly increased (approximately 50%) by the same extent of hypotonicity. This effect is likely to occur through potentiation of nonselective cation channels coupled to the muscarinic receptor (mNSCCs) and probably does not involve elevated intracellular Ca2+ concentration ([Ca2+]i), since neither removal of external Ca2+ nor [Ca2+]i buffering with 10 mM 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid significantly affected the results. Furthermore, the time course and degree of this potentiation closely matched those of video-microscopically monitored HCS. These results support the view that mechanosensitive modulation may be a powerful mechanism to regulate mNSCCs activity in gut smooth muscle, together with membrane potential and [Ca2+]i.


2005 ◽  
Vol 288 (6) ◽  
pp. H2666-H2676 ◽  
Author(s):  
Tiehua Chen ◽  
Masashi Inoue ◽  
Michael F. Sheets

Deletion of a phenylalanine at position 1617 (delF1617) in the extracellular linker between segments S3 and S4 in domain IV of the human heart Na+ channel (hH1a) has been tentatively associated with long QT syndrome type 3 (LQT3). In a mammalian cell expression system, we compared whole cell, gating, and single-channel currents of delF1617 with those of wild-type hH1a. The half points of the peak activation-voltage curve for the two channels were similar, as were the deactivation time constants at hyperpolarized test potentials. However, delF1617 demonstrated a significant negative shift of −7 mV in the half point of the voltage-dependent Na+ channel availability curve compared with wild type. In addition, both the time course of decay of Na+ current ( INa) and two-pulse development of inactivation of delF1617 were faster at negative test potentials, whereas they tended to be slower at positive potentials compared with wild type. Mean channel open times for delF1617 were shorter at potentials <0 mV, whereas they were longer at potentials >0 mV compared with wild type. Using anthopleurin-A, a site-3 toxin that inhibits movement of segment S4 in domain IV (S4-DIV), we found that gating charge contributed by the S4-DIV in delF1617 was reduced 37% compared with wild type. We conclude that deletion of a single amino acid in the S3-S4 linker of domain IV alters the voltage dependence of fast inactivation via a reduction in the gating charge contributed by S4-DIV and can cause either a gain or loss of INa, depending on membrane potential.


1994 ◽  
Vol 266 (6) ◽  
pp. C1538-C1543 ◽  
Author(s):  
V. L. Nouailhetas ◽  
J. Aboulafia ◽  
E. Frediani-Neto ◽  
A. T. Ferreira ◽  
A. C. Paiva

Single-channel currents were recorded in excised inside-out and cell-attached patches of cultured cells from the longitudinal smooth muscle of the guinea pig ileum. In the presence of symmetrical high-K+ solutions, we identified a voltage-dependent 12-pS channel. It was reversibly blocked by addition of either Ba2+ or Cs+ at the cellular side of the patch but was insensitive to Ca2+ or ATP. This channel had poor selectivity concerning cations (PLi > PK = PNa = PCa, where P is permeability) and low permeability to anions. Isosmotic substitution of NaCl for KCl in the solution facing the cellular side enhanced the channel activity by increasing NPo values where N is number of channels and Po is open probability. In the cell-attached configuration, the channel was also activated by addition of angiotensin II in the bath solution. We propose that this nonselective cation channel might play a role in the control of the membrane potential during the contractile response of the guinea pig ileum to agonists by keeping the voltage-sensitive Ca2+ channels open.


1988 ◽  
Vol 91 (2) ◽  
pp. 255-274 ◽  
Author(s):  
C Marchetti ◽  
R T Premont ◽  
A M Brown

Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.


Sign in / Sign up

Export Citation Format

Share Document