Chloride and cation currents activated by bradykinin in coronary venular endothelial cells

1994 ◽  
Vol 267 (6) ◽  
pp. H2508-H2515
Author(s):  
J. Song ◽  
M. J. Davis

Bradykinin (BK) is known to activate several types of ion channels in endothelial cells, including a K+ channel and a nonselective cation channel. The predominant BK-activated current in most endothelial cells appears to be an outward, Ca(2+)-activated K+ current. We consistently recorded a rapidly activated, spontaneously inactivated inward current stimulated by BK in bovine coronary venular endothelial cells (CVECs). With the use of a whole cell, perforated patch recording mode, the average magnitude of the current was -293 +/- 38 pA. Simultaneous measurements of current and intracellular Ca2+ concentration ([Ca2+]i) showed that the inward current correlated closely with transient increases in [Ca2+]i due to Ca2+ release from intracellular stores. The current could be blocked by 4,4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS) but not by La3+, and it persisted in Ca(2+)-free/Na(+)-free solution. When intra- and/or extracellular Cl- concentrations were altered, the reversal potential of the current shifted according to the calculated Cl- -equilibrium potential, indicating that the current was carried primarily by Cl-. Another inward current was also activated by BK. This current was slower to activate, could be blocked by La3+, but was not blocked by DIDS. The time course of the slowly activated current correlated with the plateau phase of the BK-stimulated [Ca2+]i increase, which was similar to the behavior of a nonselective cation current reported previously. We propose that these two currents may contribute to the depolarizations and net inward currents induced by BK in this cell line.

2010 ◽  
Vol 103 (3) ◽  
pp. 1543-1556 ◽  
Author(s):  
Charlene M. Hickey ◽  
Julia E. Geiger ◽  
Chris J. Groten ◽  
Neil S. Magoski

Ion channels may be gated by Ca2+ entering from the extracellular space or released from intracellular stores—typically the endoplasmic reticulum. The present study examines how Ca2+ impacts ion channels in the bag cell neurons of Aplysia californica. These neuroendocrine cells trigger ovulation through an afterdischarge involving Ca2+ influx from Ca2+ channels and Ca2+ release from both the mitochondria and endoplasmic reticulum. Liberating mitochondrial Ca2+ with the protonophore, carbonyl cyanide-4-trifluoromethoxyphenyl-hydrazone (FCCP), depolarized bag cell neurons, whereas depleting endoplasmic reticulum Ca2+ with the Ca2+-ATPase inhibitor, cyclopiazonic acid, did not. In a concentration-dependent manner, FCCP elicited an inward current associated with an increase in conductance and a linear current/voltage relationship that reversed near −40 mV. The reversal potential was unaffected by changing intracellular Cl−, but left-shifted when extracellular Ca2+ was removed and right-shifted when intracellular K+ was decreased. Strong buffering of intracellular Ca2+ decreased the current, although the response was not altered by blocking Ca2+-dependent proteases. Furthermore, fura imaging demonstrated that FCCP elevated intracellular Ca2+ with a time course similar to the current itself. Inhibiting either the V-type H+-ATPase or the ATP synthetase failed to produce a current, ruling out acidic Ca2+ stores or disruption of ATP production as mechanisms for the FCCP response. Similarly, any involvement of reactive oxygen species potentially produced by mitochondrial depolarization was mitigated by the fact that dialysis with xanthine/xanthine oxidase did not evoke an inward current. However, both the FCCP-induced current and Ca2+ elevation were diminished by disabling the mitochondrial permeability transition pore with the alkylating agent, N-ethylmaleimide. The data suggest that mitochondrial Ca2+ gates a voltage-independent, nonselective cation current with the potential to drive the afterdischarge and contribute to reproduction. Employing Ca2+ from mitochondria, rather than the more common endoplasmic reticulum, represents a diversification of the mechanisms that influence neuronal activity.


1988 ◽  
Vol 91 (4) ◽  
pp. 593-615 ◽  
Author(s):  
R D Harvey ◽  
R E Ten Eick

Whole-cell membrane currents were measured in isolated cat ventricular myocytes using a suction-electrode voltage-clamp technique. An inward-rectifying current was identified that exhibited a time-dependent activation. The peak current appeared to have a linear voltage dependence at membrane potentials negative to the reversal potential. Inward current was sensitive to K channel blockers. In addition, varying the extracellular K+ concentration caused changes in the reversal potential and slope conductance expected for a K+ current. The voltage dependence of the chord conductance exhibited a sigmoidal relationship, increasing at more negative membrane potentials. Increasing the extracellular K+ concentration increased the maximal level of conductance and caused a shift in the relationship that was directly proportional to the change in reversal potential. Activation of the current followed a monoexponential time course, and the time constant of activation exhibited a monoexponential dependence on membrane potential. Increasing the extracellular K+ concentration caused a shift of this relationship that was directly proportional to the change in reversal potential. Inactivation of inward current became evident at more negative potentials, resulting in a negative slope region of the steady state current-voltage relationship between -140 and -180 mV. Steady state inactivation exhibited a sigmoidal voltage dependence, and recovery from inactivation followed a monoexponential time course. Removing extracellular Na+ caused a decrease in the slope of the steady state current-voltage relationship at potentials negative to -140 mV, as well as a decrease of the conductance of inward current. It was concluded that this current was IK1, the inward-rectifying K+ current found in multicellular cardiac preparations. The K+ and voltage sensitivity of IK1 activation resembled that found for the inward-rectifying K+ currents in frog skeletal muscle and various egg cell preparations. Inactivation of IK1 in isolated ventricular myocytes was viewed as being the result of two processes: the first involves a voltage-dependent change in conductance; the second involves depletion of K+ from extracellular spaces. The voltage-dependent component of inactivation was associated with the presence of extracellular Na+.


1995 ◽  
Vol 268 (2) ◽  
pp. C389-C401 ◽  
Author(s):  
S. Chepilko ◽  
H. Zhou ◽  
H. Sackin ◽  
L. G. Palmer

The renal K+ channel (ROMK2) was expressed in Xenopus oocytes, and the patch-clamp technique was used to assess its conducting and gating properties. In cell-attached patches with 110 mM K+ in the bath and pipette, the reversal potential was near zero and the inward conductance (36 pS) was larger than the outward conductance (17 pS). In excised inside-out patches the channels showed rectification in the presence of 5 mM Mg2+ on the cytoplasmic side but not in Mg(2+)-free solution. Inward currents were also observed when K+ was replaced in the pipette by Rb+, NH4+, or thallium (Tl+). The reversal potentials under these conditions yielded a selectivity sequence of Tl+ > K+ > Rb+ > NH4+. On the other hand, the slope conductances for inward current gave a selectivity sequence of K+ = NH4+ > Tl+ > Rb+. The differences in the two sequences can be explained by the presence of cation binding sites within the channel, which interact with Rb+ and Tl+ more strongly and with NH4+ less strongly than with K+. Two other ions, Ba2+ and Cs+, blocked the channel from the outside. The effect of Ba2+ (1 mM) was to reduce the open probability of the channels, whereas Cs+ (10 mM) reduced the apparent single-channel current. The effects of both blockers are enhanced by membrane hyperpolarization. The kinetics of the channel were also studied in cell-attached patches. With K+ in the pipette the distribution of open times could be described by a single exponential (tau 0 = 25 ms), whereas two exponentials (tau 1 = 1 ms, tau 2 = 30 ms) were required to describe the closed-time distribution. Hyperpolarization of the oocyte membrane decreased the open probability and tau 0, and increased tau 1, tau 2, and the number of long closures. The presence of Tl+ in the pipette significantly altered the kinetics, reducing tau 0 and eliminating the long-lived closures. These results suggest that the gating of the channel may depend on the nature of the ion in the pore.


1991 ◽  
Vol 260 (5) ◽  
pp. C934-C948 ◽  
Author(s):  
K. Kusano ◽  
H. Gainer

Voltage- and Ca(2+)-activated whole cell currents were studied in AR42J cells, a clonal cell line derived from rat pancreatic acinar cells, using a patch electrode voltage-clamp technique. Four kinds of ionic currents were identified by their ionic dependencies, pharmacological properties, and kinetic parameters: 1) an outward current flow due mainly to a voltage-dependent K(+)-conductance increase, 2) an initial transient inward current due to an Na(+)-conductance increase, 3) transient and long-duration inward current due to a Ca(2+)-conductance increase, and 4) a slowly activating inward current that persists over the duration of the depolarizing pulse and deactivates slowly upon repolarization, producing a slow inward tail current. The slow inward tail current was particularly robust and was interpreted as due to a Ca(2+)-activated Cl(-)-conductance increase, since 1) the generation of this current was blocked by removing the extracellular Ca2+, applying Ca(2+)-channel blockers (Cd2+, nifedipine), or by lowering the intracellular Ca2+ concentration [( Ca2+]i) with EGTA; and 2) the reversal potential (Erev) of the slow inward tail current was close to 0 mV in the control condition (152 mM [Cl-]o/154 mM [Cl-]i), and changes of the [Cl-]o/[Cl )i ratio shifted the Erev toward the predicted Cl- equilibrium potential.


2020 ◽  
Vol 21 (14) ◽  
pp. 4876
Author(s):  
Zbigniew Burdach ◽  
Agnieszka Siemieniuk ◽  
Waldemar Karcz

In contrast to the well-studied effect of auxin on the plasma membrane K+ channel activity, little is known about the role of this hormone in regulating the vacuolar K+ channels. Here, the patch-clamp technique was used to investigate the effect of auxin (IAA) on the fast-activating vacuolar (FV) channels. It was found that the macroscopic currents displayed instantaneous currents, which at the positive potentials were about three-fold greater compared to the one at the negative potentials. When auxin was added to the bath solution at a final concentration of 1 µM, it increased the outward currents by about 60%, but did not change the inward currents. The imposition of a ten-fold vacuole-to-cytosol KCl gradient stimulated the efflux of K+ from the vacuole into the cytosol and reduced the K+ current in the opposite direction. The addition of IAA to the bath solution with the 10/100 KCl gradient decreased the outward current and increased the inward current. Luminal auxin reduced both the outward and inward current by approximately 25% compared to the control. The single channel recordings demonstrated that cytosolic auxin changed the open probability of the FV channels at the positive voltages to a moderate extent, while it significantly increased the amplitudes of the single channel outward currents and the number of open channels. At the positive voltages, auxin did not change the unitary conductance of the single channels. We suggest that auxin regulates the activity of the fast-activating vacuolar (FV) channels, thereby causing changes of the K+ fluxes across the vacuolar membrane. This mechanism might serve to tightly adjust the volume of the vacuole during plant cell expansion.


1997 ◽  
Vol 272 (4) ◽  
pp. C1222-C1231
Author(s):  
L. Izu ◽  
M. Li ◽  
R. DeMuro ◽  
M. E. Duffey

We examined the role of G proteins in activation of ionic conductances in isolated T84 cells during cholinergic stimulation. When cells were whole cell voltage clamped to the K+ equilibrium potential (E(K)) or Cl- equilibrium potential (E(Cl)) under standard conditions, the cholinergic agonist, carbachol, induced a large oscillating K+ current but only a small inward current. Addition of the GDP analogue, guanosine 5'-O-(2-thiodiphosphate), to pipettes blocked the ability of carbachol to activate the K+ current. Addition of the nonhydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), to pipettes stimulated large oscillating K+ and inward currents. This occurred even when Ca2+ was absent from the bath but not when the Ca2+ chelator, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, was added to pipettes. When all pipette and bath K+ was replaced with Na+ and cells were voltage clamped between E(Na) and E(Cl), GTPgammaS activated oscillating Na+ and Cl- currents. Finally, addition of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to pipettes activated large oscillating K+ currents but only small inward currents. These results suggest that a carbachol-induced release of Ca2+ from intracellular stores is activated by a G protein through the phospholipase C-Ins(1,4,5)P3 signaling pathway. In addition, this or another G protein activates Cl- current by directly gating Cl- channels to increase their sensitivity to Ca2+.


1994 ◽  
Vol 72 (3) ◽  
pp. 1260-1269 ◽  
Author(s):  
E. D. Cohen ◽  
Z. J. Zhou ◽  
G. L. Fain

1. We studied the receptor pharmacology of the ligand-gated currents of ON- and OFF- alpha and beta ganglion cells in a cat retinal slice preparation using the whole cell recording variation of the patch-clamp technique. Cat retinal slices were cut in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer and incubated in a bicarbonate-buffered solution. Ganglion cells were voltage clamped at -70 mV in HEPES-buffered Ringer solution. The pipette solution contained a low concentration of Cl- to distinguish mixed cationic from Cl(-)-mediated conductances, and Lucifer yellow (0.5%) was included for identification of the cell type. 2. In Ringer solution containing 1.2 mM Mg2+, current-voltage (I-V) curves of responses to the excitatory amino acid agonist (EAA) N-methyl-D-aspartate (NMDA) (200 microM) revealed a J-shaped function. In Mg(2+)-free Ringer solution containing 200 microM Cd2+ to block synaptic transmission, NMDA (200 microM) elicited an inward current 5-8 times larger at -70 mV. In both conditions I-V curves of the NMDA-induced currents reversed near 0 mV. These results suggest that there are NMDA EAA receptors present directly on the dendrites of alpha and beta ganglion cells. Responses to NMDA were blocked by +/- 2-amino-7-phosphonoheptanoic acid (AP7) (200 microM). 3. In Ringer solution containing 200-1,000 microM Cd2+ to block synaptic transmission, both ON- and OFF- alpha and beta cells responded to kainic acid (10-50 microM), alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) (20-70 microM), and quisqualic acid (0.1-30 microM) with inward currents that reversed near 0 mV. These responses were blocked by the quinoxaline EAA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 microM). The metabotropic agonists 1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) (25 microM) and L-2-amino-4-phosphonobutyric acid (L-APB) (50 microM) and L-2-amino-4-phosphonobutyric acid (L-APB) (50 microM) in the presence of Cd2+ evoked little or no response for all cells tested. 4. In the presence of Cd2+, alpha and beta cells responded to gamma-amino-butyric acid (GABA) (200 microM) and glycine (200 microM) with inward currents that reversed near -35 mV, the calculated chloride equilibrium potential Ecl. Responses to GABA and glycine were both strongly desensitizing. (+)Bicuculline methyl chloride (20 microM) blocked an average of 90% of the inward current evoked by 200 microM GABA on all ganglion cell types.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 271 (5) ◽  
pp. C1716-C1724 ◽  
Author(s):  
D. Salvail ◽  
A. Alioua ◽  
E. Rousseau

The biophysical and pharmacological characteristics of unitary Cl- currents from bovine tracheal smooth muscle cells were studied after reconstitution of microsomal vesicles into planar lipid bilayers. Two types of currents were recorded simultaneously in KCl buffer: the well-defined Ca(2+)-dependent K+ conductance [GK(Ca)] and a much smaller Cl- current, indicating that the Cl- channels under scrutiny originate from the same membrane as the GK(Ca)-type channels, the plasma membrane of airway smooth muscle (ASM) cells. The GK(Ca) activities were eliminated by the use of CsCl buffer. The average unitary Cl- conductance measured in 50 mM trans-250 mM cis CsCl was 77 +/- 6 pS (n = 21), and the reversal potential measured in various CsCl gradients followed the Cl- equilibrium potential as determined from the Nernst equation. In contrast with the previous reports describing the Ca2+ sensitivity of macroscopic ASM Cl- currents, this channel was found to be insensitive to cytoplasmic and extracellular Ca2+ levels. Phosphorylation cocktails, including protein kinases A, G, or C, did not alter the activity of the channel nor did changes in pH. Among a series of Cl- channel inhibitors, 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid [50% effective concentration (EC50) = 30 microM] and 5-nitro-2-(3-phenylpropylamino) benzoic acid (EC50 = 130 microM) were the most potent blockers of the current examined. The exact role of this surface Cl- conductance remains unclear, and its involvement in cellular activity needs further investigation.


1994 ◽  
Vol 267 (5) ◽  
pp. H1984-H1995 ◽  
Author(s):  
A. C. Zygmunt

The contribution of chloride and potassium to the 4-aminopyridine (4-AP)-resistant transient outward current was investigated in dog cardiac myocytes. Whole cell currents were recorded at 37 degrees C in single cells dissociated from epicardial and midmyocardial regions of the canine ventricle. Sodium-calcium exchange current and voltage-dependent transient outward potassium current (IA) were blocked in sodium-free solutions containing 2 mM 4-AP; sodium channels were inactivated by the -50-mV holding potential. When patch pipettes contained 0.4–0.8 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, voltage-clamp steps over the range -20 to +50 mV activated an inward calcium current (ICa) and a Ca(2+)-activated chloride current [ICl(Ca)]. ICl(Ca) was blocked by 200 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), or reduction of external chloride. Independent of the presence of potassium, the reversal potential of the SITS-sensitive current varied with extracellular chloride, as predicted for a chloride-selective conductance. The bell-shaped current-voltage relation of ICl(Ca) has a threshold of -20 mV and a peak at +40 mV. No evidence could be found for a Ca(2+)-activated potassium current or a Ca(2+)-activated nonspecific cation current under these conditions. ICl(Ca) contributed to oscillatory inward currents at diastolic potentials in cells superfused by isoproterenol and high Ca2+, suggesting a role for this current in triggered arrhythmias associated with delayed afterdepolarizations. In the normal heart, ICl(Ca) is likely to contribute to rate- and rhythm-dependent repolarization of the cardiac action potential.


1992 ◽  
Vol 100 (3) ◽  
pp. 401-426 ◽  
Author(s):  
M D Ganfornina ◽  
J López-Barneo

Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.


Sign in / Sign up

Export Citation Format

Share Document