Intracellular lactate controls adenosine output from dog gracilis muscle during moderate systemic hypoxia

1997 ◽  
Vol 272 (1) ◽  
pp. H318-H324 ◽  
Author(s):  
F. M. Mo ◽  
H. J. Ballard

The influence of systemic hypoxia on lactate and adenosine output from isolated constant-flow-perfused gracilis muscle was determined in anesthetized dogs. The lactate transport inhibitor alpha-cyano-4-hydroxycinnamic acid (CHCA) was employed to distinguish the direct effects of hypoxia on adenosine output from the effects produced indirectly by a change in lactate concentration. Reduction of arterial PO2 from 135 +/- 4 to 39 +/- 2 mmHg raised arterial lactate from 1.26 +/- 0.32 to 2.22 +/- 0.45 mM but decreased venoarterial lactate difference from 0.53 +/- 0.09 to -0.13 +/- 0.19 mM, indicating that lactate output from the muscle was abolished. Arterial adenosine did not change, but venoarterial adenosine difference increased from 20.6 +/- 10.1 to 76.5 +/- 14.4 nM. CHCA infusion during hypoxia abolished adenosine output from gracilis muscle (venoarterial adenosine difference = -20.5 +/- 40.6 nM). In isolated rat soleus muscle fibers, intracellular pH increased from 6.96 +/- 0.04 to 7.71 +/- 0.14 in response to a reduction of PO2 from 459 +/- 28 to 53 +/- 3 mmHg. Correspondingly, adenosine output decreased from 3.71 +/- 0.15 to 3.04 +/- 0.27 nM. These data suggest that hypoxia did not directly stimulate adenosine output from red oxidative skeletal muscle, but rather systemic hypoxia increased lactate delivery and the resulting increase in intracellular lactate decreased intracellular pH, which stimulated adenosine output.

1994 ◽  
Vol 267 (4) ◽  
pp. H1243-H1249 ◽  
Author(s):  
F. M. Mo ◽  
H. J. Ballard

The influence of acidosis on adenosine output from the isolated constant-flow-perfused gracilis muscle was studied in anesthetized dogs. Depression of intracellular pH (pHi) by supplementation of the inspired air with 10% CO2-90% O2 increased arterial PCO2 from 34.2 +/- 1.0 to 53.5 +/- 1.9 mmHg, arterial PO2 from 138.3 +/- 3.9 to 256.6 +/- 17.6 mmHg, and venoarterial adenosine concentration from 14 +/- 15 to 47 +/- 19 nM. Twitch contractions of the muscle at 2 Hz increased venoarterial adenosine concentration to 165 +/- 63 and 204 +/- 62 nM in normocapnia and hypercapnia, respectively. Venoarterial lactate concentration increased from 0.42 +/- 0.07 to 0.90 +/- 0.15 mM during normocapnic contractions but remained unchanged during hypercapnic contractions (0.42 +/- 0.11 mM). Depression of pHi by infusion of amiloride and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid increased venoarterial adenosine concentration from -2 +/- 27 to 124 +/- 48 nM in normocapnia and from 16 +/- 24 to 236 +/- 119 nM in hypercapnia. These results indicate that adenosine output from red oxidative skeletal muscle was stimulated by procedures that depress pHi.


1988 ◽  
Vol 254 (1) ◽  
pp. E45-E51 ◽  
Author(s):  
A. A. van Lambalgen ◽  
H. C. Runge ◽  
G. C. van den Bos ◽  
L. G. Thijs

High serum lactate may not reflect the severity of endotoxin shock: the lactate load could even be formed immediately after the endotoxin challenge. During the first 30 min after endotoxin injection (Escherichia coli; 1.5 mg/kg iv) into anesthetized dogs (4 mg.kg-1.h-1 etomidate, n = 19) we studied arterial lactate concentration; contributions of portal and splanchnic (n = 6), renal and pulmonary (n = 7), and femoral (n = 6) vascular beds to the early lactate rise; and regional O2 extraction and blood flow (microspheres). In control dogs (n = 5, no endotoxin), we found no significant hemodynamic and biochemical changes. Endotoxin caused an immediate decrease in blood pressure, cardiac output, and organ perfusion, followed by recovery after approximately 5 min to approximately 75% of preshock values at t = 30 min (except for renal blood flow, which remained low). Arterial lactate concentration started to increase almost immediately after endotoxin and increased rapidly until t = 15 min (to 300%) and then leveled off, but in spite of the hemodynamic recovery it remained elevated. A major part of the early increase in lactate concentration can be explained by splanchnic lactate production. The total splanchnic bed released more lactate than the portal bed, indicating that the liver produces lactate. We conclude that the lactate concentration later in canine endotoxin shock depends on events that occur during early shock in which the liver may play a crucial role.


1994 ◽  
Vol 76 (2) ◽  
pp. 793-800 ◽  
Author(s):  
B. Vallet ◽  
N. Lund ◽  
S. E. Curtis ◽  
D. Kelly ◽  
S. M. Cain

There is indirect evidence that tissue hypoxia occurs in human sepsis and surface measures of muscle tissue PO2 (PtiO2) in hypodynamic endotoxic animals are decreased. This study assessed systemic and regional tissue oxygenation in a more relevant model of hyperdynamic endotoxicosis. We isolated venous outflow from the left hindlimb and a segment of ileum in six anesthetized dogs to measure muscle and gut O2 delivery and uptake (VO2) and lactate flux, gut intramucosal pH (pHi) by tonometry, and PtiO2 by multi-point surface electrodes placed on mucosal and serosal surfaces of gut and on muscle. We then infused Escherichia coli lipopolysaccharide (LPS; 2 mg/kg) over 1 h followed by a 2-h infusion of dextran (0.5 ml.kg-1.min-1). LPS infusion significantly decreased systemic and gut VO2, cardiac output (Q), and blood pressure and increased arterial lactate and gut lactate flux. Resuscitation increased Q to above baseline and restored systemic VO2. In response to LPS and then resuscitation, muscle PtiO2 distribution did not change, suggesting little microcirculatory disturbance, although mean PtiO2 first decreased and then increased. In contrast, gut VO2 and pHi remained low and lactate output remained high, despite restoration of gut blood flow. Gut VO2, lactate flux, pHi, and PtiO2 histograms were consistent with a marked redistribution of blood flow within the gut wall, away from the mucosa and toward the muscularis. These data show that, in hyperdynamic acute endotoxemia, skeletal muscle PtiO2 and VO2 are well maintained, but blood flow within the gut is significantly disturbed with mucosal hypoxia.


1983 ◽  
Vol 212 (3) ◽  
pp. 875-879 ◽  
Author(s):  
N G Anderson ◽  
P J Hanson

Arteriovenous differences for several potential metabolic substrates were measured across the fundic wall of the stomach of rats that had been starved overnight. There was an uptake of glucose and D-3-hydroxybutyrate, but no significant arteriovenous differences for acetoacetate, pyruvate, non-esterified fatty acids and glycerol were apparent. Lactate output represented a substantial fraction of glucose uptake when the arterial lactate concentration was within the resting physiological range, but when the arterial lactate concentration was above 1.3 mM, lactate was taken up by the stomach. Stimulation of acid secretion by pentagastrin did not affect the value of arteriovenous differences. Thus blood flow to the fundic mucosa and substrate metabolism may be similarly enhanced by pentagastrin. It is concluded that metabolism of glucose and D-3-hydroxybutyrate, and to a lesser extent of glutamine and branched-chain amino acids [Anderson & Hanson (1983) Biochem. J. 210, 451-455], could supply energy to power acid secretion.


2003 ◽  
Vol 284 (1) ◽  
pp. E193-E205 ◽  
Author(s):  
G. van Hall ◽  
M. Jensen-Urstad ◽  
H. Rosdahl ◽  
H.-C. Holmberg ◽  
B. Saltin ◽  
...  

To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72–76% maximal O2 uptake. A high lactate appearance rate (Ra, 184 ± 17 μmol · kg−1 · min−1) but a low arterial lactate concentration (∼2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of ∼2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was ∼45% at rest and ∼95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate Ra during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.


1988 ◽  
Vol 65 (4) ◽  
pp. 1723-1728 ◽  
Author(s):  
M. Manohar ◽  
T. E. Goetz ◽  
D. Nganwa

Diaphragmatic O2 and lactate extraction were examined in seven healthy ponies during maximal exercise (ME) carried out without, as well as with, inspiratory resistive breathing. Arterial and diaphragmatic venous blood were sampled simultaneously at rest and at 30-s intervals during the 4 min of ME. Experiments were carried out before and after left laryngeal hemiplegia (LH) was produced. During ME, normal ponies exhibited hypocapnia, hemoconcentration, and a decrease in arterial PO2 (PaO2) with insignificant change in O2 saturation. In LH ponies, PaO2 and O2 saturation decreased well below that in normal ponies, but because of higher hemoglobin concentration, arterial O2 content exceeded that in normal ponies. Because of their high PaCO2 during ME, acidosis was more pronounced in LH animals despite similar lactate values. Diaphragmatic venous PO2 and O2 saturation decreased with ME to 15.5 +/- 0.9 Torr and 18 +/- 0.5%, respectively, at 120 s of exercise in normal ponies. In LH ponies, corresponding values were significantly less: 12.4 +/- 1.3 Torr and 15.5 +/- 0.7% at 120 s and 9.8 +/- 1.4 Torr and 14.3 +/- 0.6% at 240 s of ME. Mean phrenic O2 extraction plateaued at 81 and 83% in normal and LH animals, respectively. Significant differences in lactate concentration between arterial and phrenic-venous blood were not observed during ME. It is concluded that PO2 and O2 saturation in the phrenic-venous blood of normal ponies do not reach their lowest possible values even during ME. Also, the healthy equine diaphragm, even with the added stress of inspiratory resistive breathing, did not engage in net lactate production.


Author(s):  
Olivier Girard ◽  
Romain Leuenberger ◽  
Sarah J. Willis ◽  
Fabio Borrani ◽  
Grégoire P. Millet

Purpose: The authors compared the effects of active preconditioning with local and systemic hypoxia during submaximal cycling. Methods: On separate visits, 14 active participants completed 4 trials. Each visit was composed of 1 preconditioning phase followed, after 40 minutes of rest, by 3 × 6-minute cycling bouts (intensity = 85% of critical power; rest = 6 min). The preconditioning phase consisted of 4 × 5-minute cycling bouts at 1.5 W·kg−1 (rest = 5 min) in 4 conditions: control (no occlusion and normoxia), blood flow restriction (60% of total occlusion), HYP (systemic hypoxia; inspired fraction of oxygen = 13.6%), and blood flow restriction + HYP (local and systemic hypoxia combined). Results: During the preconditioning phase, there were main effects of both systemic (all P < .014) and local hypoxia (all P ≤ .001) on heart rate, arterial oxygen saturation, leg discomfort, difficulty of breathing, and blood lactate concentration. Cardiorespiratory variables, gross efficiency, energy cost, and energy expenditure during the last minute of 6-minute cycling bouts did not differ between conditions (all P > .105). Conclusion: Local and systemic hypoxic stimuli, or a combination of both, during active preconditioning did not improve physiological responses such as cycling efficiency during subsequent submaximal cycling.


2007 ◽  
Vol 103 (4) ◽  
pp. 1227-1233 ◽  
Author(s):  
H. B. Nielsen ◽  
M. A. Febbraio ◽  
P. Ott ◽  
P. Krustrup ◽  
N. H. Secher

The exponential rise in blood lactate with exercise intensity may be influenced by hepatic lactate uptake. We compared muscle-derived lactate to the hepatic elimination during 2 h prolonged cycling (62 ± 4% of maximal O2 uptake, V̇o2max) followed by incremental exercise in seven healthy men. Hepatic blood flow was assessed by indocyanine green dye elimination and leg blood flow by thermodilution. During prolonged exercise, the hepatic glucose output was lower than the leg glucose uptake (3.8 ± 0.5 vs. 6.5 ± 0.6 mmol/min; mean ± SE) and at an arterial lactate of 2.0 ± 0.2 mM, the leg lactate output of 3.0 ± 1.8 mmol/min was about fourfold higher than the hepatic lactate uptake (0.7 ± 0.3 mmol/min). During incremental exercise, the hepatic glucose output was about one-third of the leg glucose uptake (2.0 ± 0.4 vs. 6.2 ± 1.3 mmol/min) and the arterial lactate reached 6.0 ± 1.1 mM because the leg lactate output of 8.9 ± 2.7 mmol/min was markedly higher than the lactate taken up by the liver (1.1 ± 0.6 mmol/min). Compared with prolonged exercise, the hepatic lactate uptake increased during incremental exercise, but the relative hepatic lactate uptake decreased to about one-tenth of the lactate released by the legs. This drop in relative hepatic lactate extraction may contribute to the increase in arterial lactate during intense exercise.


1987 ◽  
Vol 62 (6) ◽  
pp. 2237-2240 ◽  
Author(s):  
R. W. Stevenson ◽  
D. R. Mitchell ◽  
G. K. Hendrick ◽  
R. Rainey ◽  
A. D. Cherrington ◽  
...  

Muscle glycogen levels in the perfused rat hemicorpus preparation were reduced two-thirds by electrical stimulation plus exposure to epinephrine (10(-7) M) for 30 min. During the contraction period muscle lactate concentrations increased from a control level of 3.6 +/- 0.6 to a final value of 24.1 +/- 1.6 mumol/g muscle. To determine whether the lactate that had accumulated in muscle during contraction could be used to resynthesize glycogen, glycogen levels were determined after 1–3 h of recovery from the contraction period during which time the perfusion medium (flow-through system) contained low (1.3 mmol/l) or high (10.5 or 18 mmol/l) lactate concentrations but no glucose. With the low perfusate lactate concentration, muscle lactate levels declined to 7.2 +/- 0.8 mumol/g muscle by 3 h after the contraction period and muscle glycogen levels did not increase (1.28 +/- 0.07 at 3 h vs. 1.35 +/- 0.09 mg glucosyl U/g at end of exercise). Lactate disappearance from muscle was accounted for entirely by output into the venous effluent. With the high perfusate lactate concentrations, muscle lactate levels remained high (13.7 +/- 1.7 and 19.3 +/- 2.0 mumol/g) and glycogen levels increased by 1.11 and 0.86 mg glucosyl U/g, respectively, after 1 h of recovery from exercise. No more glycogen was synthesized when the recovery period was extended. Therefore, it appears that limited resynthesis of glycogen from lactate can occur after the contraction period but only when arterial lactate concentrations are high; otherwise the lactate that builds up in muscle during contraction will diffuse into the bloodstream.


Sign in / Sign up

Export Citation Format

Share Document