Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca-activated K channels

1997 ◽  
Vol 273 (1) ◽  
pp. H76-H84 ◽  
Author(s):  
G. O. Carrier ◽  
L. C. Fuchs ◽  
A. P. Winecoff ◽  
A. D. Giulumian ◽  
R. E. White

Nitric oxide (NO) released from endothelial cells or exogenous nitrates is a potent dilator of arterial smooth muscle; however, the molecular mechanisms mediating relaxation to NO in the microcirculation have not been characterized. The present study investigated the relaxant effect of nitrovasodilators on microvessels obtained from the rat mesentery and also employed whole cell and single-channel patch-clamp techniques to identify the molecular target of NO action in myocytes from these vessels. Both sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP) relaxed phenylephrine-induced contractions by approximately 80% but were significantly less effective in relaxing contractions induced by 40 mM KCl. Relaxation to SNP was also inhibited by the K(+)-channel blocker tetraethylammonium or by inhibition of the activity of the guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase (PKG). These results suggest that SNP stimulated K+ efflux by opening K+ channels via PKG-mediated phosphorylation. Perforated-patch experiments revealed that both SNP and SNAP increased outward currents in microvascular myocytes, and single-channel studies identified the high-conductance Ca(2+)- and voltage-activated K+ (BKCa) channel as the target of nitrovasodilator action. The effects of nitrovasodilators on BKCa channels were mimicked by cGMP and inhibited by blocking the activity of PKG. We conclude that stimulation of BKCa-channel activity via cGMP-dependent phosphorylation contributes to the vasodilatory effect of NO on microvessels and that a direct effect of NO on BKCa channels does not play a major role in this process. We propose that this mechanism is important for the therapeutic effect of nitrovasodilators on peripheral resistance and arterial blood pressure.

2021 ◽  
Vol 14 (5) ◽  
pp. 388
Author(s):  
Wei-Ting Chang ◽  
Sheng-Nan Wu

QO-40 (5-(chloromethyl)-3-(naphthalene-1-yl)-2-(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-7(4H)-one) is a novel and selective activator of KCNQ2/KCNQ3 K+ channels. However, it remains largely unknown whether this compound can modify any other type of plasmalemmal ionic channel. The effects of QO-40 on ion channels in pituitary GH3 lactotrophs were investigated in this study. QO-40 stimulated Ca2+-activated K+ current (IK(Ca)) with an EC50 value of 2.3 μM in these cells. QO-40-stimulated IK(Ca) was attenuated by the further addition of GAL-021 or paxilline but not by linopirdine or TRAM-34. In inside-out mode, this compound added to the intracellular leaflet of the detached patches stimulated large-conductance Ca2+-activated K+ (BKCa) channels with no change in single-channel conductance; however, there was a decrease in the slow component of the mean closed time of BKCa channels. The KD value required for the QO-40-mediated decrease in the slow component at the mean closure time was 1.96 μM. This compound shifted the steady-state activation curve of BKCa channels to a less positive voltage and decreased the gating charge of the channel. The application of QO-40 also increased the hysteretic strength of BKCa channels elicited by a long-lasting isosceles-triangular ramp voltage. In HEK293T cells expressing α-hSlo, QO-40 stimulated BKCa channel activity. Overall, these findings demonstrate that QO-40 can interact directly with the BKCa channel to increase the amplitude of IK(Ca) in GH3 cells.


2006 ◽  
Vol 127 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Jill Thompson ◽  
Ted Begenisich

The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.


2021 ◽  
Vol 22 (4) ◽  
pp. 2175
Author(s):  
Adonis Z. Wu ◽  
Tzu-Lun Ohn ◽  
Ren-Jay Shei ◽  
Huei-Fang Wu ◽  
Yong-Cyuan Chen ◽  
...  

Sphingosine-1-phosphate (S1P), is a signaling sphingolipid which acts as a bioactive lipid mediator. We assessed whether S1P had multiplex effects in regulating the large-conductance Ca2+-activated K+ channel (BKCa) in catecholamine-secreting chromaffin cells. Using multiple patch-clamp modes, Ca2+ imaging, and computational modeling, we evaluated the effects of S1P on the Ca2+-activated K+ currents (IK(Ca)) in bovine adrenal chromaffin cells and in a pheochromocytoma cell line (PC12). In outside-out patches, the open probability of BKCa channel was reduced with a mean-closed time increment, but without a conductance change in response to a low-concentration S1P (1 µM). The intracellular Ca2+ concentration (Cai) was elevated in response to a high-dose (10 µM) but not low-dose of S1P. The single-channel activity of BKCa was also enhanced by S1P (10 µM) in the cell-attached recording of chromaffin cells. In the whole-cell voltage-clamp, a low-dose S1P (1 µM) suppressed IK(Ca), whereas a high-dose S1P (10 µM) produced a biphasic response in the amplitude of IK(Ca), i.e., an initial decrease followed by a sustained increase. The S1P-induced IK(Ca) enhancement was abolished by BAPTA. Current-clamp studies showed that S1P (1 µM) increased the action potential (AP) firing. Simulation data revealed that the decreased BKCa conductance leads to increased AP firings in a modeling chromaffin cell. Over a similar dosage range, S1P (1 µM) inhibited IK(Ca) and the permissive role of S1P on the BKCa activity was also effectively observed in the PC12 cell system. The S1P-mediated IK(Ca) stimulation may result from the elevated Cai, whereas the inhibition of BKCa activity by S1P appears to be direct. By the differentiated tailoring BKCa channel function, S1P can modulate stimulus-secretion coupling in chromaffin cells.


1987 ◽  
Vol 253 (3) ◽  
pp. F476-F487 ◽  
Author(s):  
H. Sackin ◽  
L. G. Palmer

Potassium (K+) channels in the basolateral membrane of unperfused Necturus proximal tubules were studied in both cell-attached and excised patches, after removal of the tubule basement membrane by manual dissection without collagenase. Two different K+ channels were identified on the basis of their kinetics: a short open-time K+ channel, with a mean open time less than 1 ms, and a long open-time K+ channel with a mean open time greater than 20 ms. The short open-time channel occurred more frequently than the longer channel, especially in excised patches. For inside-out excised patches with Cl- replaced by gluconate, the current-voltage relation of the short open-time K+ channel was linear over +/- 60 mV, with a K+-Na+ selectivity of 12 +/- 2 (n = 12), as calculated from the reversal potential with oppositely directed Na+ and K+ gradients. With K-Ringer in the patch pipette and Na-Ringer in the bath, the conductance of the short open-time channel was 47 +/- 2 pS (n = 15) for cell-attached patches, 26 +/- 2 pS (n = 15) for patches excised (inside out) into Na-Ringer, and 36 +/- 6 pS (n = 3) for excised patches with K-Ringer on both sides. These different conductances can be partially explained by a dependence of single-channel conductance on the K+ concentration on the interior side of the membrane. In experiments with a constant K+ gradient across excised patches, large changes in Na+ at the interior side of the membrane produced no change in single-channel conductance, arguing against a direct block of the K+ channel by Na+. Finally, the activity of the short open-time channel was voltage gated, where the mean number of open channels decreased as a linear function of basolateral membrane depolarization for potentials between -60 and 0 mV. Depolarization from -60 to -40 mV decreased the mean number of open K+ channels by 28 +/- 8% (n = 6).


1992 ◽  
Vol 100 (3) ◽  
pp. 401-426 ◽  
Author(s):  
M D Ganfornina ◽  
J López-Barneo

Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension (PO2). Ca(2+)-activated K+ channels (KCa channels) with gamma approximately 210 pS in symmetrical K+ solutions were observed when [Ca2+]i was greater than 0.1 microM. Small conductance channels with gamma = 16 pS were not affected by [Ca2+]i and they exhibited slow activation and inactivation time courses. In these two channel types open probability (P(open)) was unaffected when exposed to normoxic (PO2 = 140 mmHg) or hypoxic (PO2 approximately 5-10 mmHg) external solutions. A third channel type (referred to as KO2 channel), having an intermediate gamma(approximately 40 pS), was the most frequently recorded. KO2 channels are steeply voltage dependent and not affected by [Ca2+]i, they inactivate almost completely in less than 500 ms, and their P(open) reversibly decreases upon exposure to low PO2. The effect of low PO2 is voltage dependent, being more pronounced at moderately depolarized voltages. At 0 mV, for example, P(open) diminishes to approximately 40% of the control value. The time course of ensemble current averages of KO2 channels is remarkably similar to that of the O2-sensitive K+ current. In addition, ensemble average and macroscopic K+ currents are affected similarly by low PO2. These observations strongly suggest that KO2 channels are the main contributors to the macroscopic K+ current of glomus cells. The reversible inhibition of KO2 channel activity by low PO2 does not desensitize and is not related to the presence of F-, ATP, and GTP-gamma-S at the internal face of the membrane. These results indicate that KO2 channels confer upon glomus cells their unique chemoreceptor properties and that the O2-K+ channel interaction occurs either directly or through an O2 sensor intrinsic to the plasma membrane closely associated with the channel molecule.


1988 ◽  
Vol 254 (6) ◽  
pp. H1200-H1205 ◽  
Author(s):  
G. E. Kirsch ◽  
A. Yatani ◽  
J. Codina ◽  
L. Birnbaumer ◽  
A. M. Brown

A specific guanine nucleotide-binding protein, Gk, is the link by which muscarinic receptors activate atrial potassium channels (Science Wash. DC 235: 207-211, 1987). In adult guinea pigs, the alpha-subunit at picomolar concentrations mediates the holo-G protein effect (Science Wash. DC 236: 442-445, 1987), but in chick embryo it has been reported that the beta gamma-dimer at nanomolar concentrations rather than the alpha-subunit is the effective mediator (Nature Lond. 325: 321-326, 1987). This difference might have a phylogenetic or ontogenetic basis, and the present experiments tested these possibilities. Preactivated alpha k derived from human red blood cell Gk, when applied to the intracellular surface of inside-out membrane patches from the atria of embryonic chick, neonatal rat, and adult guinea pig activated single K+ channel currents. In each case, the alpha k-activated channels had the same single-channel conductance and mean open time as the muscarinic agonist-activated channels. Half-maximal activation was achieved at alpha k-concentrations of 2.4-13.8 pM. Hence, alpha k-activation of these K+ channels is independent of differences in age or species. The detergent 3-[3-cholamidopropyl)-dimethyammoniol]-1-propanesulfonate (CHAPS), which was used by Logothetis et al. (Nature Lond. 325: 321-326, 1987) at 184 microM to suspend the hydrophobic beta gamma-dimers, activated the same currents. We conclude that the effects of the beta gamma-dimer on these K+ channels is unknown and that as we had proposed earlier (Science Wash. DC 236: 442-445, 1987) it is the alpha-subunit that mediates the Gk effect.


1991 ◽  
Vol 261 (4) ◽  
pp. C583-C590 ◽  
Author(s):  
G. E. Kirsch ◽  
M. Taglialatela ◽  
A. M. Brown

Tetraethylammonium (TEA) has been used recently to probe natural and mutational variants of voltage-dependent K+ channels encoded by cDNA clones. Its usefulness as a probe of channel structure prompted us to examine the molecular mechanism by which TEA blocks single-channel currents in Xenopus oocytes expressing the rat brain K+ channel, RCK2. TEA at the intracellular surface of membrane patches decreased channel open time and increased the duration of closed intervals. Tetrapentylammonium had similar but more potent effects. Extracellular application of TEA caused an apparent reduction of single-channel amplitude. Block was slower at the high-affinity internal site than at the low-affinity external site. Internal TEA selectively blocks open K+ channels, and the voltage dependence of the block indicates that the binding site lies within the membrane electric field at a point 25% of the distance from the cytoplasmic margin. External TEA also interacts with the open channel but is less sensitive to membrane potential. The results indicate that the internal and external TEA binding sites define the inner and outer margins of the aqueous pore.


1997 ◽  
Vol 273 (3) ◽  
pp. F421-F429 ◽  
Author(s):  
W. Wang ◽  
M. Lu ◽  
M. Balazy ◽  
S. C. Hebert

Raising extracellular Ca2+ (Ca2+o) stimulating the Ca(2+)-sensing receptor (CaR) decreased the activity of the apical 70-pS K+ channel via a cytochrome P-450-dependent mechanism in the thick ascending limb (TAL) of the rat kidney [W. H. Wang, M. Lu, and S. C. Hebert. Am. J. Physiol. 270 (Cell Physiol. 39): C103-C111, 1996]. We have now used the patch-clamp technique and fluorescent dyes to investigate the signaling mechanism by which this effect is produced. Addition of 500 microM gadolinium (Gd3+), an agent which has been shown to activate the CaR (E. M. Brown, G. Gamba, D. Riccardi, M. Lombardi, R. Butters, O. Kifor, A. Sun, M. A. Hediger, J. Lytton, and S. C. Hebert. Nature 366: 575-580, 1993), mimics the inhibitory effect of raising Ca2+o from 1.1 to 5 mM on channel activity. Effects of the high Ca2+o and Gd3+ were abolished by blockade of phospholipase A2 (PLA2) but not by inhibition of phospholipase C (PLC). Raising Ca2+o also increased 20-hydroxyeicosatetraenoic acid production significantly. To investigate the effect of stimulation of the CaR on intracellular Ca2+ (Ca2+i), we used the acetoxymethyl ester of fura 2 to monitor the Ca2+i. Raising Ca2+o from 1.1 to 5 mM increased the Ca2+i significantly from 50 to 150 nM. However, addition of thapsigargin failed to abolish the effect of 5 mM Ca2+o on Ca2+i. Also, application of Gd3+ only slightly increased the Ca2+i, suggesting that elevation of the Ca2+i by high Ca2+o was the result of an influx of Ca2+ rather than enhanced Ca2+ release from Ca2+ stores. That the increase in Ca2+ influx is not mainly responsible for the effect of stimulating the CaR on channel activity is further supported by experiments in which 500 microM Gd3+ inhibited the K+ channel in cell-attached patches in a Ca(2+)-free bath. Furthermore, addition of 500 microM Gd3+ or 5 mM Ca2+o decreased intracellular Na+ measured with fluorescent sodium indicator, suggesting inhibition of Na+ transport. We conclude that PLA2 is involved in the stimulation of the CaR-induced inhibition of apical K+ channels in the TAL.


1995 ◽  
Vol 269 (4) ◽  
pp. H1349-H1358 ◽  
Author(s):  
C. Fu ◽  
A. Pleumsamran ◽  
U. Oh ◽  
D. Kim

Extracellular ATP (ATPo) and adenosine activate G protein-gated inwardly rectifying K+ currents in atrial cells. Earlier studies have suggested that the two agonists may use separate pathways to activate the K+ current. Therefore, we examined whether the K+ channels activated by the two agonists have different properties under identical ionic conditions. In cell-attached patches, K+ channels activated by 100 microM ATP in the pipette had a single-channel conductance and mean open time of 32.0 +/- 0.2 pS and 0.5 +/- 0.1 ms, respectively, compared with 31.3 +/- 0.3 pS and 0.9 +/- 0.1 ms for the K+ channels activated by adenosine (140 mM KCl). With ATPo as the agonist, the K+ channel activity in cell-attached patches was approximately threefold lower than that in inside-out patches with 100 microM GTP in the bath. Applying ATP to the cytoplasmic side of the membrane (ATPi) produced a biphasic concentration-dependent effect on channel activity: an increase at low [mean affinity constant (K0.5) = 190 microM] and a decrease at high (K0.5 = 1.3 mM) concentrations. In contrast, with adenosine as the agonist, K+ channel activity in cell-attached patches was approximately fourfold greater than that in inside-out patches with 100 microM GTP in the bath. In inside-out patches, ATPi only augmented the K+ channel activity (K0.5 = 32 microM). These results show that although both ATPo and adenosine activate kinetically similar K+ channels in atrial cells, the channels are regulated differently by intracellular nucleotides.


1998 ◽  
Vol 111 (4) ◽  
pp. 565-581 ◽  
Author(s):  
Birgit Hirschberg ◽  
James Maylie ◽  
John P. Adelman ◽  
Neil V. Marrion

Small-conductance Ca-activated K+ channels play an important role in modulating excitability in many cell types. These channels are activated by submicromolar concentrations of intracellular Ca2+, but little is known about the gating kinetics upon activation by Ca2+. In this study, single channel currents were recorded from Xenopus oocytes expressing the apamin-sensitive clone rSK2. Channel activity was detectable in 0.2 μM Ca2+ and was maximal above 2 μM Ca2+. Analysis of stationary currents revealed two open times and three closed times, with only the longest closed time being Ca dependent, decreasing with increasing Ca2+ concentrations. In addition, elevated Ca2+ concentrations resulted in a larger percentage of long openings and short closures. Membrane voltage did not have significant effects on either open or closed times. The open probability was ∼0.6 in 1 μM free Ca2+. A lower open probability of ∼0.05 in 1 μM Ca2+ was also observed, and channels switched spontaneously between behaviors. The occurrence of these switches and the amount of time channels spent displaying high open probability behavior was Ca2+ dependent. The two behaviors shared many features including the open times and the short and intermediate closed times, but the low open probability behavior was characterized by a different, long Ca2+-dependent closed time in the range of hundreds of milliseconds to seconds. Small-conductance Ca- activated K+ channel gating was modeled by a gating scheme consisting of four closed and two open states. This model yielded a close representation of the single channel data and predicted a macroscopic activation time course similar to that observed upon fast application of Ca2+ to excised inside-out patches.


Sign in / Sign up

Export Citation Format

Share Document