Impaired wound healing and angiogenesis in eNOS-deficient mice

1999 ◽  
Vol 277 (4) ◽  
pp. H1600-H1608 ◽  
Author(s):  
Paul C. Lee ◽  
A. Neil Salyapongse ◽  
Gwynne A. Bragdon ◽  
Larry L. Shears ◽  
Simon C. Watkins ◽  
...  

A role for nitric oxide (NO) in wound healing has been proposed; however, the absolute requirement of NO for wound healing in vivo and the contribution of endothelial NO synthase (eNOS) have not been determined. Experiments were carried out using eNOS gene knockout (KO) mice to determine the requirement for eNOS on wound closure and wound strength. Excisional wound closure was significantly delayed in the eNOS KO mice (29.4 ± 2.2 days) compared with wild-type (WT) controls (20.2 ± 0.4 days). At 10 days, incisional wound tensile strength demonstrated a 38% reduction in the eNOS KO mice. Because effective wound repair requires growth factor-stimulated angiogenesis, in vitro and in vivo angiogenesis assays were performed in the mice to assess the effects of eNOS deficiency on angiogenesis. Endothelial cell sprouting assays confirmed in vitro that eNOS is required for proper endothelial cell migration, proliferation, and differentiation. Aortic segments harvested from eNOS KO mice cultured with Matrigel demonstrated a significant reduction in endothelial cell sprouting and [3H]thymidine incorporation compared with WT mice at 5 days. Capillary ingrowth into subcutaneously implanted Matrigel plugs was significantly reduced in eNOS KO mice (2.67 ± 0.33 vessels/plug) compared with WT mice (10.17 ± 0.79 vessels/plug). These results clearly show that eNOS plays a significant role in facilitating wound repair and growth factor-stimulated angiogenesis.

2020 ◽  
Vol 8 ◽  
Author(s):  
Pengcheng Xu ◽  
Yaguang Wu ◽  
Lina Zhou ◽  
Zengjun Yang ◽  
Xiaorong Zhang ◽  
...  

Abstract Background Autologous platelet-rich plasma (PRP) has been suggested to be effective for wound healing. However, evidence for its use in patients with acute and chronic wounds remains insufficient. The aims of this study were to comprehensively examine the effectiveness, synergy and possible mechanism of PRP-mediated improvement of acute skin wound repair. Methods Full-thickness wounds were made on the back of C57/BL6 mice. PRP or saline solution as a control was administered to the wound area. Wound healing rate, local inflammation, angiogenesis, re-epithelialization and collagen deposition were measured at days 3, 5, 7 and 14 after skin injury. The biological character of epidermal stem cells (ESCs), which reflect the potential for re-epithelialization, was further evaluated in vitro and in vivo. Results PRP strongly improved skin wound healing, which was associated with regulation of local inflammation, enhancement of angiogenesis and re-epithelialization. PRP treatment significantly reduced the production of inflammatory cytokines interleukin-17A and interleukin-1β. An increase in the local vessel intensity and enhancement of re-epithelialization were also observed in animals with PRP administration and were associated with enhanced secretion of growth factors such as vascular endothelial growth factor and insulin-like growth factor-1. Moreover, PRP treatment ameliorated the survival and activated the migration and proliferation of primary cultured ESCs, and these effects were accompanied by the differentiation of ESCs into adult cells following the changes of CD49f and keratin 10 and keratin 14. Conclusion PRP improved skin wound healing by modulating inflammation and increasing angiogenesis and re-epithelialization. However, the underlying regulatory mechanism needs to be investigated in the future. Our data provide a preliminary theoretical foundation for the clinical administration of PRP in wound healing and skin regeneration.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1182
Author(s):  
Hanif Haidari ◽  
Richard Bright ◽  
Sanjay Garg ◽  
Krasimir Vasilev ◽  
Allison J. Cowin ◽  
...  

Biofilm-associated infections are a major cause of impaired wound healing. Despite the broad spectrum of anti-bacterial benefits provided by silver nanoparticles (AgNPs), these materials still cause controversy due to cytotoxicity and a lack of efficacy against mature biofilms. Herein, highly potent ultrasmall AgNPs were combined with a biocompatible hydrogel with integrated synergistic functionalities to facilitate elimination of clinically relevant mature biofilms in-vivo combined with improved wound healing capacity. The delivery platform showed a superior release mechanism, reflected by high biocompatibility, hemocompatibility, and extended antibacterial efficacy. In vivo studies using the S. aureus wound biofilm model showed that the AgNP hydrogel (200 µg/g) was highly effective in eliminating biofilm infection and promoting wound repair compared to the controls, including silver sulfadiazine (Ag SD). Treatment of infected wounds with the AgNP hydrogel resulted in faster wound closure (46% closure compared to 20% for Ag SD) and accelerated wound re-epithelization (60% for AgNP), as well as improved early collagen deposition. The AgNP hydrogel did not show any toxicity to tissue and/or organs. These findings suggest that the developed AgNP hydrogel has the potential to be a safe wound treatment capable of eliminating infection and providing a safe yet effective strategy for the treatment of infected wounds.


2018 ◽  
Vol 49 (3) ◽  
pp. 1074-1089 ◽  
Author(s):  
Ying Zhao ◽  
Qiang Wang ◽  
Yuan Jin ◽  
Yadan Li ◽  
Changjun Nie ◽  
...  

Background/Aims: How to aid recovery from severe skin injuries, such as burns, chronic or radiation ulcers, and trauma, is a critical clinical problem. Current treatment methods remain limited, and the discovery of ideal wound-healing therapeutics has been a focus of research. Functional recombinant proteins such as basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) have been developed for skin repair, however, some disadvantages in their use remain. This study reports the discovery of a novel small peptide targeting fibroblast growth factor receptor 2 IIIc (FGFR2IIIc) as a potential candidate for skin wound healing. Methods: A phage-displayed peptide library was used for biopanning FGFR2IIIc-targeting small peptides. The selected small peptides binding to FGFR2IIIc were qualitatively evaluated by an enzyme-linked immunosorbent assay. Their biological function was detected by a cell proliferation assay. Among them, an optimized small peptide named H1 was selected for further study. The affinity of the H1 peptide and FGFR2IIIc was determined by an isothermal titration calorimetry device. The ability of theH1 peptide to promote skin wound repair was investigated using an endothelial cell tube formation assay and wound healing scratch assay in vitro. Subsequently, the H1 peptide was assessed using a rat skin full-thickness wound model and chorioallantoic membrane (CAM) assays in vivo. To explore its molecular mechanisms, RNA-Seq, quantitative real-time PCR, and western blot assays were performed. Computer molecular simulations were also conducted to analyze the binding model. Results: We identified a novel FGFR2IIIc-targeting small peptide, called H1, with 7 amino acid residues using phage display. H1 had high binding affinity with FGFR2IIIc. The H1 peptide promoted the proliferation and motility of fibroblasts and vascular endothelial cells in vitro. In addition, the H1 peptide enhanced angiogenesis in the chick chorioallantoic membrane and accelerated wound healing in a rat full-thickness wound model in vivo. The H1 peptide activated both the PI3K-AKT and MAPK-ERK1/2 pathways and simultaneously increased the secretion of vascular endothelial growth factor. Computer analysis demonstrated that the model of H1 peptide binding to FGFR2IIIc was similar to that of FGF2 and FGFR2IIIc. Conclusion: The H1 peptide has a high affinity for FGFR2IIIc and shows potential as a wound healing agent. As a substitute for bFGF, it could be developed into a novel therapeutic candidate for skin wound repair in the future.


2015 ◽  
Vol 36 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Bizunesh M. Borena ◽  
Ann Martens ◽  
Sarah Y. Broeckx ◽  
Evelyne Meyer ◽  
Koen Chiers ◽  
...  

Mammal skin has a crucial function in several life-preserving processes such as hydration, protection against chemicals and pathogens, initialization of vitamin D synthesis, excretion and heat regulation. Severe damage of the skin may therefore be life-threatening. Skin wound repair is a multiphased, yet well-orchestrated process including the interaction of various cell types, growth factors and cytokines aiming at closure of the skin and preferably resulting in tissue repair. Regardless various therapeutic modalities targeting at enhancing wound healing, the development of novel approaches for this pathology remains a clinical challenge. The time-consuming conservative wound management is mainly restricted to wound repair rather than restitution of the tissue integrity (the so-called “restitutio ad integrum”). Therefore, there is a continued search towards more efficacious wound therapies to reduce health care burden, provide patients with long-term relief and ultimately scarless wound healing. Recent in vivo and in vitro studies on the use of skin wound regenerative therapies provide encouraging results, but more protracted studies will have to determine whether the effect of observed effects are clinically significant and whether regeneration rather than repair can be achieved. For all the aforementioned reasons, this article reviews the emerging field of regenerative skin wound healing in mammals with particular emphasis on growth factor- and stem cell-based therapies.


Blood ◽  
2010 ◽  
Vol 116 (24) ◽  
pp. 5423-5433 ◽  
Author(s):  
Baofeng Zhao ◽  
Changzoon Chun ◽  
Zhong Liu ◽  
Mark A. Horswill ◽  
Kallal Pramanik ◽  
...  

Abstract Our previous work has shown that axon guidance gene family Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro. To investigate NogoB-NgBR function in vivo, we cloned the zebrafish ortholog of both genes and studied loss of function in vivo using morpholino antisense technology. Zebrafish ortholog of Nogo-B is expressed in somite while expression of zebrafish NgBR is localized in intersomitic vessel (ISV) and axial dorsal aorta during embryonic development. NgBR or Nogo-B knockdown embryos show defects in ISV sprouting in the zebrafish trunk. Mechanistically, we found that NgBR knockdown not only abolished its ligand Nogo-B–stimulated endothelial cell migration but also reduced the vascular endothelial growth factor (VEGF)–stimulated phosphorylation of Akt and vascular endothelial growth factor–induced chemotaxis and morphogenesis of human umbilical vein endothelial cells. Further, constitutively activated Akt (myristoylated [myr]Akt) or human NgBR can rescue the NgBR knockdown umbilical vein endothelial cell migration defects in vitro or NgBR morpholino-caused ISV defects in vivo. These data place Akt at the downstream of NgBR in both Nogo-B– and VEGF-coordinated sprouting of ISVs. In summary, this study identifies the in vivo functional role for Nogo-B and its receptor (NgBR) in angiogenesis in zebrafish.


2019 ◽  
Vol 97 (4) ◽  
pp. 488-496
Author(s):  
Yi Zhang ◽  
Wei Shi

Steroid receptor coactivator 1 (SRC-1) is a transcriptional coactivator for steroid receptors and other transcription factors. SRC-1 has been shown to play an important role in the progression of breast cancer and prostate cancer. However, its role in glioma progression remains unknown. Here, in this study, we report that SRC-1 is upregulated in the vessels of human glioma and exerts important regulatory functions. Specifically, SRC-1 expression significantly enhanced basic fibroblast growth factor (bFGF)-mediated angiogenesis in vivo. Downregulating of SRC-1 expression suppressed endothelial cell migration and tube formation in vitro and upregulated the expression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metallopeptidase (MMP)-9 in glioma cells. These SRC-1-mediated effects were dependent on the activation of polyomavirus enhancer activator 3 (PEA3) transcriptional activity. VEGF and VEGF inducer GS4012 induced the direct binding of SRC-1 and PEA3 in glioma cells, and PEA3 could directly bind with VEGF and MMP-9 promoter under GS4012 treatment in glioma cell. The expression of pro-angiogenic factors induced by SRC-1 was abrogated by sh-PEA3 knockdown. Taken together, these novel outcomes indicated that SRC-1 modulated endothelial cell (EC) function and facilitated a pro-angiogenic microenvironment through PEA3 signaling. Moreover, a combination of targeting SRC-1 and PEA3 signaling in glioma could be a promising strategy for suppressing tumor angiogenesis.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3790
Author(s):  
Yt Jun Cheah ◽  
Muhamad Ramdzan Buyong ◽  
Mohd Heikal Mohd Mohd Yunus

Electrical stimulation (ES) is an attractive field among clinicians in the topic of wound healing, which is common yet complicated and requires multidisciplinary approaches. The conventional dressing and skin graft showed no promise on complete wound closure. These urge the need for the exploration of electrical stimulation to supplement current wound care management. This review aims to provide an overview of electrical stimulation in wound healing. The mechanism of galvanotaxis related to wound repair will be reviewed at the cellular and molecular levels. Meanwhile, different modalities of externally applied electricity mimicking a physiologic electric field will be discussed and compared in vitro, in vivo, and clinically. With the emerging of tissue engineering and regenerative medicine, the integration of electroconductive biomaterials into modern miniaturised dressing is of interest and has become possible with the advancing understanding of smart biomaterials.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


Sign in / Sign up

Export Citation Format

Share Document