scholarly journals Localization of dichlorofluorescin in cardiac myocytes: implications for assessment of oxidative stress

2000 ◽  
Vol 278 (3) ◽  
pp. H982-H990 ◽  
Author(s):  
Luther M. Swift ◽  
Narine Sarvazyan

Localization and staining features of the oxidant-sensitive fluorescent probe 2′7′-dichlorofluorescin (DCFH) were evaluated in isolated cardiac muscle cells. Cardiomyocytes rapidly accumulated the probe and retained steady levels of DCFH and its highly fluorescent oxidized product dichlorofluorescein (DCF) in probe-free medium for 1.5 h. DCF was associated with mitochondria and was released by the proton ionophore carbonyl cyanide m-chlorophenylhydrazone but not by saponin, which permeabilizes the plasma membrane. A mitochondrial distribution of DCF was also suggested by experiments with the mitochondrial marker MitoTracker Red, in which quenching was observed between DCF and MitoTracker Red in live cells. Isolated cardiac mitochondria rapidly accumulated DCF, and high micromolar concentrations of the probe inhibited ADP-stimulated respiration rate. The study provides an information base essential for the interpretation and design of experiments with DCF as a marker of oxidative stress in cardiac muscle and reveals preferential localization of the probe in mitochondria.

2012 ◽  
Vol 302 (3) ◽  
pp. H716-H723 ◽  
Author(s):  
Ching-Chieh Su ◽  
Jia-Ying Yang ◽  
Hsin-Ban Leu ◽  
Yumay Chen ◽  
Ping H. Wang

We recently reported translocation and activation of Akt in cardiac mitochondria. This study was to determine whether activation of Akt in mitochondria could inhibit apoptosis of cardiac muscle cells. Insulin stimulation induced translocation of phosphorylated Akt to the mitochondria in primary cardiomyocytes. A mitochondria-targeted constitutively active Akt was overexpressed via adenoviral vector and inhibited efflux of cytochrome c and apoptosis-inducing factor from mitochondria to cytosol and partially prevented loss of mitochondria cross-membrane electrochemical gradient. Activation of caspase 3 was suppressed in the cardiomyocytes transduced with mitochondria-targeted active Akt, whereas a mitochondria-targeted dominant negative Akt enhanced activation of caspase 3. Terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay showed that mitochondrial activation of Akt significantly reduced the number of apoptotic cells. When the endogenous Akt was abolished by LY294002, the antiapoptotic actions of mitochondrial Akt remained effective. These experiments suggested that mitochondrial Akt suppressed apoptosis signaling independent of cytosolic Akt in cardiac muscle cells.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 774
Author(s):  
Silvia Nistri ◽  
Claudia Fiorillo ◽  
Matteo Becatti ◽  
Daniele Bani

Serelaxin (RLX) designates the pharmaceutical form of the human natural hormone relaxin-2 that has been shown to markedly reduce tissue and cell damage induced by hypoxia and reoxygenation (HR). The evidence that RLX exerts similar protective effects on different organs and cells at relatively low, nanomolar concentrations suggests that it specifically targets a common pathogenic mechanism of HR-induced damage, namely oxidative stress. In this study we offer experimental evidence that RLX (17 nmol L-1), added to the medium of HR-exposed H9c2 rat cardiac muscle cells, significantly reduces cell oxidative damage, mitochondrial dysfunction and apoptosis. These effects appear to rely on the up-regulation of the cellular availability of reduced glutathione (GSH), a ubiquitous endogenous antioxidant metabolite. Conversely, superoxide dismutase activity was not influenced by RLX, which, however, was not endowed with chemical antioxidant properties. Taken together, these findings verify the major pharmacological role of RLX in the protection against HR-induced oxidative stress, and shed first light on its mechanisms of action.


2009 ◽  
Vol 296 (2) ◽  
pp. H380-H388 ◽  
Author(s):  
Ashwani Malhotra ◽  
Himanshu Vashistha ◽  
Virendra S. Yadav ◽  
Michael G. Dube ◽  
Satya P. Kalra ◽  
...  

Apoptotic myocyte cell death, diastolic dysfunction, and progressive deterioration in left ventricular pump function characterize the clinical course of diabetic cardiomyopathy. A key question concerns the mechanism(s) by which hyperglycemia (HG) transmits danger signals in cardiac muscle cells. The growth factor adapter protein p66ShcA is a genetic determinant of longevity, which controls mitochondrial metabolism and cellular responses to oxidative stress. Here we demonstrate that interventions which attenuate or prevent HG-induced phosphorylation at critical position 36 Ser residue (phospho-Ser36) inhibit the redox function of p66ShcA and promote the survival phenotype. Adult rat ventricular myocytes obtained by enzymatic dissociation were transduced with mutant-36 p66ShcA (mu-36) dominant-negative expression vector and plated in serum-free media containing 5 or 25 mM glucose. At HG, adult rat ventricular myocytes exhibit a marked increase in reactive oxygen species production, upregulation of phospho-Ser36, collapse of mitochondrial transmembrane potential, and increased formation of p66ShcA/cytochrome- c complexes. These indexes of oxidative stress were accompanied by a 40% increase in apoptosis and the upregulation of cleaved caspase-3 and the apoptosis-related proteins p53 and Bax. To test whether p66ShcA functions as a redox-sensitive molecular switch in vivo, we examined the hearts of male Akita diabetic nonobese (C57BL/6J) mice. Western blot analysis detected the upregulation of phospho-Ser36, the translocation of p66ShcA to mitochondria, and the formation of p66ShcA/cytochrome- c complexes. Conversely, the correction of HG by recombinant adeno-associated viral delivery of leptin reversed these alterations. We conclude that p66ShcA is a molecular switch whose redox function is turned on by phospho-Ser36 and turned off by interventions that prevent this modification.


2004 ◽  
Vol 29 (1) ◽  
pp. 83-95 ◽  
Author(s):  
Hung-Chien Wu ◽  
Jaung-Geng Lin ◽  
Chun-Hsien Chu ◽  
Yung-Hsien Chang ◽  
Chung-Gwo Chang ◽  
...  

2005 ◽  
Vol 27 (1) ◽  
pp. 33-51 ◽  
Author(s):  
Ki-Chan Ha ◽  
Han-Jung Chae ◽  
Cheng-Shi Piao ◽  
Suhn-Hee Kim ◽  
Hyung-Ryong Kim ◽  
...  

2006 ◽  
Vol 84 (2) ◽  
pp. 239-245 ◽  
Author(s):  
Luciane A. Faine ◽  
Hosana G. Rodrigues ◽  
Cristiano M. Galhardi ◽  
Geovana M.X. Ebaid ◽  
Yeda S. Diniz ◽  
...  

Recent lines of evidence suggest that the beneficial effects of olive oil are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. The aim of this work was determine the effects of olive oil and its components, oleic acid and the polyphenol dihydroxyphenylethanol (DPE), on serum lipids, oxidative stress, and energy metabolism on cardiac tissue. Twenty four male Wistar rats, 200 g, were divided into the following 4 groups (n = 6): control (C), OO group that received extra-virgin olive oil (7.5 mL/kg), OA group was treated with oleic acid (3.45 mL/kg), and the DPE group that received the polyphenol DPE (7.5 mg/kg). These components were administered by gavage over 30 days, twice a week. All animals were provided with food and water ad libitum The results show that olive oil was more effective than its isolated components in improving lipid profile, elevating high-density lipoprotein, and diminishing low-density lipoprotein cholesterol concentrations. Olive oil induced decreased antioxidant Mn-superoxide dismutase activity and diminished protein carbonyl concentration, indicating that olive oil may exert direct antioxidant effect on myocardium. DPE, considered as potential antioxidant, induced elevated aerobic metabolism, triacylglycerols, and lipid hydroperoxides concentrations in cardiac muscle, indicating that long-term intake of this polyphenol may induce its undesirable pro-oxidant activity on myocardium.


1981 ◽  
Vol 86 (2) ◽  
pp. 358 ◽  
Author(s):  
M. J. Galvin ◽  
C. A. Hall ◽  
D. I. McRee

Sign in / Sign up

Export Citation Format

Share Document