Preeclamptic pregnancy is associated with increased sympathetic and decreased parasympathetic control of HR

2000 ◽  
Vol 278 (4) ◽  
pp. H1269-H1273 ◽  
Author(s):  
Cheryl C. H. Yang ◽  
Te-Chang Chao ◽  
Terry B. J. Kuo ◽  
Chang-Sheng Yin ◽  
Hsing I. Chen

Previous work from our laboratory using heart rate variability (HRV) has demonstrated that women before menopause have a more dominant parasympathetic and less effective sympathetic regulations of heart rate compared with men. Because it is still not clear whether normal or preeclamptic pregnancy coincides with alternations in the autonomic functions, we evaluated the changes of HRV in 17 nonpregnant, 17 normotensive pregnant, and 11 preeclamptic women who were clinically diagnosed without history of diabetic neuropathy, cardiac arrhythmia, and other cardiovascular diseases. Frequency-domain analysis of short-term, stationary R-R intervals was performed to evaluate the total variance, low-frequency power (LF; 0.04–0.15 Hz), high-frequency power (HF; 0.15–0.40 Hz), ratio of LF to HF (LF/HF), and LF in normalized units (LF%). Natural logarithm transformation was applied to variance, LF, HF, and LF/HF for the adjustment of the skewness of distribution. We found that the normal pregnant group had a lower R-R value and HF but had a higher LF/HF and LF% compared with the nonpregnant group. The preeclamptic group had lower HF but higher LF/HF compared with either the normal pregnant or nonpregnant group. Our results suggest that normal pregnancy is associated with a facilitation of sympathetic regulation and an attenuation of parasympathetic influence of heart rate, and such alterations are enhanced in preeclamptic pregnancy.

1999 ◽  
Vol 277 (6) ◽  
pp. H2233-H2239 ◽  
Author(s):  
Terry B. J. Kuo ◽  
Tsann Lin ◽  
Cheryl C. H. Yang ◽  
Chia-Lin Li ◽  
Chieh-Fu Chen ◽  
...  

To clarify the influence of gender on sympathetic and parasympathetic control of heart rate in middle-aged subjects and on the subsequent aging process, heart rate variability (HRV) was studied in normal populations of women ( n = 598) and men ( n = 472) ranging in age from 40 to 79 yr. These groups were divided into eight age strata at 5-yr intervals and were clinically diagnosed as having no hypertension, hypotension, diabetic neuropathy, or cardiac arrhythmia. Frequency-domain analysis of short-term, stationary R-R intervals was performed, which reveals very-low-frequency power (VLF; 0.003–0.04 Hz), low-frequency power (LF; 0.04–0.15 Hz), high-frequency power (HF; 0.15–0.40 Hz), the ratio of LF to HF (LF/HF), and LF and HF power in normalized units (LF% and HF%, respectively). The distribution of variance, VLF, LF, HF, and LF/HF exhibited acute skewness, which was adjusted by natural logarithmic transformation. Women had higher HF in the age strata from 40 to 49 yr, whereas men had higher LF% and LF/HF between 40 and 59 yr. No disparity in HRV measurements was found between the sexes in age strata ≥60 yr. Although absolute measurements of HRV (variance, VLF, LF, and HF) decreased linearly with age, no significant change in relative measurements (LF/HF, LF%, and HF%), especially in men, was detected until age 60 yr. We conclude that middle-aged women and men have a more dominant parasympathetic and sympathetic regulation of heart rate, respectively. The gender-related difference in parasympathetic regulation diminishes after age 50 yr, whereas a significant time delay for the disappearance of sympathetic dominance occurs in men.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3900 ◽  
Author(s):  
Min Hu ◽  
Shen Wang ◽  
Dan Wang ◽  
Qinhao Lai ◽  
Xiaoying Chen ◽  
...  

Objective The present study aimed to assess the effects of exercise with dietary restriction on cardiac autonomic activity, arterial stiffness, and cardiovascular biomarkers in obese individuals. Methods Seventeen obese adults completed an 8-week exercise and dietary program. Anthropometry, body composition, and multiple biochemical markers were measured. We used carotid-femoral pulse wave velocity (cfPWV), brachial-ankle pulse wave velocity (baPWV), central blood pressure, and augmentation index (AIx) to assess arterial stiffness. To determine cardiac autonomic activity, heart rate variability (HRV) was analyzed by standard deviation of normal-to-normal intervals (SDNN), square root of the mean squared differences of successive normal-to-normal intervals (RMSSD), total power (TF), low-frequency power in normalized units (LFnu), high-frequency power in normalized units (HFnu), and low-frequency power/high-frequency power (LF/HF). Results Following the exercise and diet intervention, obese subjects had significant reductions in body weight, body mass index, body fat percentage, brachial systolic blood pressure, and resting heart rate, and they had shown improvements in blood chemistry markers such as lipid profiles, insulin, and high-sensitivity C-reactive protein. There was a significant reduction in both cfPWV and baPWV following the intervention when compared to baseline levels. Moreover, the AIx and aortic systolic blood pressure were significantly reduced after the intervention. The diet and exercise intervention significantly increased cardiac autonomic modulation (determined by improved SDNN, RMSSD, TP LF, HF, and LF/HF), which was partly due to changes in heart rate, insulin resistance, and the inflammatory pattern. Furthermore, we observed a correlation between enhanced cardiac autonomic modulation (LF/HF) and decreased arterial stiffness, as measured by central cfPWV and systemic baPWV. Discussion An 8-week combined intervention of diet and exercise is effective in improving cardiac autonomic function in obese adults, with an associated decrease in central and systemic arterial stiffness.


1998 ◽  
Vol 275 (1) ◽  
pp. H213-H219 ◽  
Author(s):  
Michael V. Højgaard ◽  
Niels-Henrik Holstein-Rathlou ◽  
Erik Agner ◽  
Jørgen K. Kanters

Frequency domain analysis of heart rate variability (HRV) has been proposed as a semiquantitative method for assessing activities in the autonomic nervous system. We examined whether absolute powers, normalized powers, and the low frequency-to-high frequency ratio (LF/HF) derived from the HRV power spectrum could detect shifts in autonomic balance in a setting with low sympathetic nervous tone. Healthy subjects were examined for 3 h in the supine position during 1) control conditions ( n = 12), 2) acute β-blockade ( n = 11), and 3) chronic β-blockade ( n = 10). Heart rate fell during the first 40 min of the control session (72 ± 2 to 64 ± 2 beats/min; P < 0.005) and was even lower during acute and chronic β-blockade (56 ± 2 beats/min; P < 0.005). The powers of all spectral areas rose during the first 60 min in all three settings, more so with β-blockade ( P < 0.05). LF/HF was found to contain the same information as powers expressed in normalized units. LF/HF detected the shift in autonomic balance induced by β-blockade but not the change induced by supine position. In conclusion, none of the investigated measures derived from power spectral analysis comprehensively and consistently described the changes in autonomic balance.


2014 ◽  
Vol 39 (8) ◽  
pp. 969-975 ◽  
Author(s):  
Justin P. Guilkey ◽  
Matthew Overstreet ◽  
Bo Fernhall ◽  
Anthony D. Mahon

The purpose of this study was to examine the influence of postexercise parasympathetic modulation, measured by heart rate variability (HRV), on heart rate recovery (HRR) in boys (n = 13, 10.1 ± 0.8 years) and men (n = 13, 23.9 ± 1.5 years) following maximal and submaximal exercise. Subjects completed 10 min of supine rest, followed by graded exercise on a cycle ergometer to maximal effort. On a separate day, subjects exercised at an intensity equivalent to ventilatory threshold. Immediately following both exercise bouts, 1-min HRR was assessed in the supine position. HRV was analyzed under controlled breathing during the final 5 min of rest and recovery in the time and frequency domains and transformed to natural log (ln) values. Boys had a greater 1-min HRR than men following maximal (58 ± 8 vs. 47 ± 11 beats·min−1) and submaximal (59 ± 8 vs. 47 ± 15 beats·min−1) exercise (p < 0.05). Following maximal exercise, boys had greater ln root mean square successive differences in R-R intervals (2.52 ± 0.95 ms), ln standard deviation of NN intervals (3.34 ± 0.57 ms), ln high-frequency power (4.32 ± 2.00 ms2), and ln low-frequency power (4.98 ± 1.17 ms2) than men (1.33 ± 0.37 ms, 2.52 ± 0.24 ms, 1.32 ± 1.06 ms2 and 2.80 ± 0.74 ms2, respectively) (p < 0.05). There were no differences in any HRV variables between groups following submaximal exercise (p > 0.05). In conclusion, it appears that greater parasympathetic modulation accounts for greater HRR following maximal exercise in boys versus men. Although submaximal HRR was greater in boys, parasympathetic responses were similar between groups.


2020 ◽  
Author(s):  
Jian Zhan ◽  
Zuo-xi Wu ◽  
Zhen-xin Duan ◽  
Gui-ying Yang ◽  
Zhi-yong Du ◽  
...  

Abstract Background: Estimating the depth of anaesthesia (DoA) is critical in modern anaesthetic practice. Multiple DoA monitors based on electroencephalograms (EEGs) have been widely used for DoA monitoring; however, these monitors may be inaccurate under certain conditions. In this work, the hypothesis that heart rate variability (HRV)-derived features based on a deep neural network can distinguish different anaesthesia states was investigated.Methods: A novel method of distinguishing different anaesthesia states was developed based on four HRV-derived time and frequency domain features combined with a deep neural network. Four features were extracted from an electrocardiogram, including the HRV high-frequency power, low-frequency power, high-to-low-frequency power ratio, and sample entropy. Next, these features were used as inputs for the deep neural network, which used the expert assessment of consciousness level as the reference output. Finally, the deep neural network was compared with the logistic regression, support vector machine, and decision tree models. The datasets of 23 anaesthesia patients were used to assess the proposed method.Results: The accuracies of the four models, in distinguishing the anaesthesia states, were 86.2% (logistic regression), 87.5% (support vector machine), 87.2% (decision tree), and 90.1% (deep neural network). The accuracy of deep neural network was higher than those of the logistic regression (p < 0.05), support vector machine (p < 0.05), and decision tree (p < 0.05) approaches. Our method outperformed the logistic regression, support vector machine, and decision tree methods.Conclusions: The incorporation of four HRV-derived time and frequency domain features and a deep neural network could accurately distinguish between different anaesthesia states; however, this study is a pilot of a feasibility study, providing a method to supplement DoA monitoring based on EEG features to improve the accuracy of DoA estimation.


CHEST Journal ◽  
2011 ◽  
Vol 140 (4) ◽  
pp. 427A
Author(s):  
Subhasis Behera ◽  
Samuel Brown ◽  
Jason Jones ◽  
Michael Lanspa ◽  
Kathryn Kuttler ◽  
...  

2009 ◽  
Vol 76 (4 suppl 2) ◽  
pp. S51-S59 ◽  
Author(s):  
Jeffrey P. Moak ◽  
David S. Goldstein ◽  
Basil A. Eldadah ◽  
Ahmed Saleem ◽  
Courtney Holmes ◽  
...  

1996 ◽  
Vol 91 (4) ◽  
pp. 391-398 ◽  
Author(s):  
Piotr Ponikowski ◽  
Massimo Piepoli ◽  
Aham A. Amadi ◽  
Tuan Peng Chua ◽  
Derek Harrington ◽  
...  

1. In patients with chronic heart failure, heart rate variability is reduced with relative preservation of very-low-frequency power (< 0.04 Hz). Heart rate variability has been measured without acceptable information on its stability and the optimal recording periods for enhancing this reproducibility. 2. To this aim and to establish the optimal length of recording for the evaluation of the very-low-frequency power, we analysed 40, 20, 10 and 5 min ECG recordings obtained on two separate occasions in 16 patients with chronic heart failure. The repeatability coefficient and the variation coefficient were calculated for the heart rate variability parameters, in the time-domain (mean RR, SDRR and pNN50), and in the frequency-domain: very low frequency (< 0.04 Hz), low frequency (0.04–0.15 Hz), high frequency (0.15–0.40 Hz), total power (0–0.5 Hz). 3. Mean RR remained virtually identical over time (variation coefficient 8%). The reproducibility of time-domain (variation coefficient 25–139%) and of spectral measures (variation coefficient 45–111%) was very low. The stability of the heart rate variability parameters was only apparently improved after square root and after log transformation. 4. Very-low-frequency values derived from 5 and 10 min intervals were significantly lower than those calculated from 40 and 20 min intervals (P < 0.005). Discrete very-low-frequency peaks were detected in 11 out of 16 patients on the first 40, 20 and 10 min recording, but only in seven out of 16 when 5 min segments were analysed. 5. The reproducibility of both time or frequency-domain measures of heart rate variability in patients with chronic heart failure may vary significantly. Square root or log-transformed parameters may be considered rather than absolute units in studies assessing the influence of management on heart rate variability profile. Recordings of at least 20 min in stable, controlled conditions are to be recommended to optimize signal acquisition in patients with chronic heart failure, if very-low-frequency power in particular is to be studied.


1999 ◽  
Vol 276 (1) ◽  
pp. H215-H223 ◽  
Author(s):  
Melanie S. Houle ◽  
George E. Billman

The low-frequency component of the heart rate variability spectrum (0.06–0.10 Hz) is often used as an accurate reflection of sympathetic activity. Therefore, interventions that enhance cardiac sympathetic drive, e.g., exercise and myocardial ischemia, should elicit increases in the low-frequency power. Furthermore, because an enhanced sympathetic activation has been linked to an increased propensity for malignant arrhythmias, one might also predict a greater low-frequency power in animals that are susceptible to ventricular fibrillation than in resistant animals. To test these hypotheses, a 2-min coronary occlusion was made during the last minute of exercise in 71 dogs with healed myocardial infarctions: 43 had ventricular fibrillation (susceptible) and 28 did not experience arrhythmias (resistant). Exercise or ischemia alone provoked significant heart rate increases in both groups of animals, with the largest increase in the susceptible animals. These heart rate increases were attenuated by β-adrenergic receptor blockade. Despite the sympathetically mediated increases in heart rate, the low-frequency power decreased, rather than increased, in both groups, with the largest decrease again in the susceptible animals: 4.0 ± 0.2 (susceptible) vs. 4.1 ± 0.2 ln ms2 (resistant) in preexercise control and 2.2 ± 0.2 (susceptible) vs. 2.9 ± 0.2 ln ms2 (resistant) at highest exercise level. In a similar manner the parasympathetic antagonist atropine sulfate elicited significant reductions in the low-frequency power. Although sympathetic nerve activity was not directly recorded, these data suggest that the low-frequency component of the heart rate power spectrum probably results from an interaction of the sympathetic and parasympathetic nervous systems and, as such, does not accurately reflect changes in the sympathetic activity.


Sign in / Sign up

Export Citation Format

Share Document