A mathematical model of CO2 effect on cardiovascular regulation

2001 ◽  
Vol 281 (5) ◽  
pp. H2036-H2052 ◽  
Author(s):  
Elisa Magosso ◽  
Mauro Ursino

The effect of changes in arterial CO2tension on the cardiovascular system is analyzed by means of a mathematical model. The model is an extension of a previous one that already incorporated the main reflex and local mechanisms triggered by O2 changes. The new aspects covered by the model are the O2-CO2 interaction at the peripheral chemoreceptors, the effect of local CO2 changes on peripheral resistances, the direct central neural system (CNS) response to CO2, and the control of central chemoreceptors on ventilation and tidal volume. A statistical comparison between model simulation results and various experimental data has been performed. This comparison suggests that the model is able to simulate the acute cardiovascular response to changes in blood gas content in a variety of conditions (normoxic hypercapnia, hypercapnia during artificial ventilation, hypocapnic hypoxia, and hypercapnic hypoxia). The model ascribes the observed responses to the complex superimposition of many mechanisms simultaneously working (baroreflex, peripheral chemoreflex, CNS response, lung-stretch receptors, local gas tension effect), which may be differently activated depending on the specific stimulus under study. However, although some experiments can be reproduced using a single basal set of parameters, reproduction of other experiments requires a different combination of the mechanism strengths (particularly, a different strength of the local CO2mechanism on peripheral resistances and of the CNS response to CO2). Starting from these results, some assumptions to explain the striking differences reported in the literature are presented. The model may represent a valid support for the interpretation of physiological data on acute cardiovascular regulation and may favor the synthesis of contradictory results into a single theoretical setting.

2014 ◽  
Vol 611 ◽  
pp. 325-331
Author(s):  
Ľubica Miková ◽  
Michal Kelemen ◽  
Vladislav Maxim ◽  
Jaromír Jezný

In current practice the use of mathematical models is substantially widespread, reason being the recent increase in development of programs for this purpose, with the option of model simulation in a virtual environment, proportional to the evolving computer technology. The article contains a mathematical model created using Matlab program. The simulation results are compared with scientific literature that addresses DC motors and evaluated. For simplicity, a graphical interface was created.


2021 ◽  
pp. 0734242X2110337
Author(s):  
Tea Sokač ◽  
Anita Šalić ◽  
Dajana Kučić Grgić ◽  
Monika Šabić Runjavec ◽  
Marijana Vidaković ◽  
...  

In this paper, two different types of biowaste composting processes were carried out – composting without and with bioaugmentation. All experiments were performed in an adiabatic reactor for 14 days. Composting enhanced with bioaugmentation was the better choice because the thermophilic phase was achieved earlier, making the composting time shorter. Additionally, a higher conversion of substrate (amount of substrate consumed) was also noticed in the process enhanced by bioaugmentation. A mathematical model was developed and process parameters were estimated in order to optimize the composting process. Based on good agreement between experimental data and the mathematical model simulation results, a three-level-four-factor Box-Behnken experimental design was employed to define the optimal process conditions for further studies. It was found that the air flow rate and the mass fraction of the substrate have the most significant effect on the composting process. An improvement of the composting process was achieved after altering the mentioned variables, resulting in shorter composting time and higher conversion of the substrate.


Author(s):  
Ehab S. Ghith ◽  
◽  
Mohamed Sallam ◽  
Islam S. M. Khalil ◽  
Mohamed Serry ◽  
...  

The process of tuning the PID controller’s parameters is considered to be a difficult task. Several approaches were developed in the past known as conventional methods. One of these methods is the Ziegler and Nichols that relies on accurate mathematical model of the linear system, but if the system is complex the former method fails to compute the parameters of PID controller. To overcome this problem, recently there exist several techniques based on artificial intelligence such as optimization techniques. The optimization techniques does not require any mathematical model and they are considered to be easy to implement on any system even if it complex, can reach optimal solutions on the parameters. In this study, a new approach to control the position of the micro-robotics system proportional - integral - derivative (PID) controller is designed and a recently developed algorithm based on optimization is known as the sparrow search algorithm (SSA). By using the sparrow search algorithm (SSA), the optimal PID controller parameters were obtained by minimizing a new objective function, which consists of the integral square Time multiplied square Error (ISTES) performance index. The effectiveness of the proposed SSA-based controller was verified by comparisons made with the Sine Cosine algorithm (SCA), and Flower pollination algorithm (FPA) controllers in terms of time and frequency response. Each control technique will be applied to the identified model (simulation results) using MATLAB Simulink and the laboratory setup (experimental results) using LABVIEW software. Finally, the SSA showed the highest performance in time and frequency responses.


Author(s):  
Subhas Khajanchi

AbstractWe investigate a mathematical model using a system of coupled ordinary differential equations, which describes the interplay of malignant glioma cells, macrophages, glioma specific CD8+T cells and the immunotherapeutic drug Adoptive Cellular Immunotherapy (ACI). To better understand under what circumstances the glioma cells can be eliminated, we employ the theory of optimal control. We investigate the dynamics of the system by observing biologically feasible equilibrium points and their stability analysis before administration of the external therapy ACI. We solve an optimal control problem with an objective functional which minimizes the glioma cell burden as well as the side effects of the treatment. We characterize our optimal control in terms of the solutions to the optimality system, in which the state system coupled with the adjoint system. Our model simulation demonstrates that the strength of treatment $u_{1}(t)$ plays an important role to eliminate the glioma cells. Finally, we derive an optimal treatment strategy and then solve it numerically.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Jianlin Xie ◽  
Yangsheng Zhao

Injection of high-temperature water or steam into low-permeability coalbed for efficient and rapid extraction of coalbed methane has been studied by our university for many years and will soon be implemented in the field. With comprehensive consideration of coupling of heat transfer, water seepage, desorption of coalbed methane, and coal-rock mass deformation, the paper establishes a more comprehensive mathematical model of the coupling effect of deformation-seepage-heat transfer on coalbed methane transport. Compared with the previous studies, this theoretical model considers the change of adsorbed and free coalbed methane at high temperature and the coalbed methane transport caused by a high-temperature gradient. Using the Tunlan Coal Mine of Shanxi Coking Coal Group to conduct the numerical simulations on the coalbed methane extraction project using heat injection technology, results show that (1) high-temperature water flowed towards the extraction hole along fractured fissures, with seepage towards the coal mass on both sides of the fissure at the same time, gradually heating the coalbed and forming an arcuate distribution of temperature from high to low for an area from the fractured fissure to the coalbed upper and lower boundaries. On the thirtieth day of heat injection, the temperature of the coalbed in the heat injection area ranged from 140°C to 260°C. (2) Under high temperatures, desorption of the coalbed gas was quick, and the adsorption gas content formed an oval funnel from the heat injection hole towards the extraction hole, centered by the fractured fissure, and migrating towards the coalbed upper and lower boundaries. Along with heat injection and extraction, the absorbed gas content rapidly decreased, and on the thirtieth day of injection, the absorbed gas content of the entire heat injection area decreased to 1.5 m3/t, only 7% of the original. (3) During heat injection, the coalbed gas pore pressure rapidly increased and reached 5.5 MPa on the tenth day, about 4.5 times the original, and the pore pressure steadied at 3.5 MPa on the thirtieth day of extraction. Such a high gas pressure gradient promoted the rapid flow and drainage of the gas.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maya Inbar ◽  
Eitan Grossman ◽  
Ayelet N. Landau

Abstract Studies of speech processing investigate the relationship between temporal structure in speech stimuli and neural activity. Despite clear evidence that the brain tracks speech at low frequencies (~ 1 Hz), it is not well understood what linguistic information gives rise to this rhythm. In this study, we harness linguistic theory to draw attention to Intonation Units (IUs), a fundamental prosodic unit of human language, and characterize their temporal structure as captured in the speech envelope, an acoustic representation relevant to the neural processing of speech. IUs are defined by a specific pattern of syllable delivery, together with resets in pitch and articulatory force. Linguistic studies of spontaneous speech indicate that this prosodic segmentation paces new information in language use across diverse languages. Therefore, IUs provide a universal structural cue for the cognitive dynamics of speech production and comprehension. We study the relation between IUs and periodicities in the speech envelope, applying methods from investigations of neural synchronization. Our sample includes recordings from every-day speech contexts of over 100 speakers and six languages. We find that sequences of IUs form a consistent low-frequency rhythm and constitute a significant periodic cue within the speech envelope. Our findings allow to predict that IUs are utilized by the neural system when tracking speech. The methods we introduce here facilitate testing this prediction in the future (i.e., with physiological data).


2003 ◽  
Vol 284 (1) ◽  
pp. R219-R226 ◽  
Author(s):  
Dane A. Crossley ◽  
Warren W. Burggren ◽  
Jordi Altimiras

Renewed interest in the use of the embryonic chicken as a model of perinatal cardiovascular regulation has inspired new questions about the control mechanisms that respond to acute perturbations, such as hypoxia. The objectives of this study were to determine the cardiovascular responses, the regulatory mechanisms involved in those cardiovascular responses, and whether those mechanisms involved the central nervous system (CNS) of embryonic chickens. Heart rate (fH) and blood pressure were measured in chicken embryos of different incubation ages during exposure to different levels of hypoxia (15, 10, and 5% O2). At all levels of hypoxia and at all developmental ages, a depression of fH and arterial pressure was observed, with the exception of day 20 embryos in 15 and 10% O2. The intensity of the embryonic fH and blood pressure responses were directly related to the level of hypoxia used. Muscarinic and α-adrenergic receptor stimulation limited the hypoxic hypotension on days 15– 19 and 15– 21, respectively, as indicated after blockade with atropine and phentolamine. During the final 3 days of incubation, the intensity of the hypoxic hypotension was magnified due to α-vasodilation caused by β-adrenergic and muscarinic receptor stimulation. In 19- to 21-day-old embryos, the fH response to hypoxia was limited by α-adrenergic receptor stimulation as indicated by the accentuated bradycardia after blockade with phentolamine. Furthermore, on day 21, atropine limited the hypoxic bradycardia, indicating that muscarinic receptors also play a role in the fH response at this age. In addition, the muscarinic actions on the heart and the adrenergic effects on the vasculature appeared to occur through a hypoxic-induced direct release from chromaffin tissue and autonomic nerve terminals. Thus, in embryonic chickens, the only cardiovascular response to hypoxia that involves the CNS was the cholinergic regulation of arterial pressure after day 15 of incubation. Therefore, although embryonic chickens and fetal sheep, the standard models of perinatal cardiovascular physiology, respond to hypoxia with a similar redistribution of cardiac output, the underlying mechanisms differ between these species.


2018 ◽  
Vol 471 ◽  
pp. 137-146
Author(s):  
Andrzej RODZOCH ◽  
Dominik MIAZ ◽  
Grzegorz JELENIEWICZ

A hydrogeologist often faces a serious difficulty in estimation of available groundwater resources. In contrast to renewable water resources, which are valuable for a study area and estimated with greater or lower precision depending on the quality of available data, disposable groundwater resources cannot be treated as a natural and relatively constant characteristic of the management area, because their size and spatial distribution depend on criteria assumed to set an optimal way for managing water supplies. Since those criteria can be defined in various ways and their significance can vary as well, spatial distribution of groundwater resources and their size can theoretically have infinite number of equally correct solutions. They can be only treated as optimal for a strictly specified set of criteria and therefore can be modified according to different needs and assumed priorities. Interpreted this way, they can only be calculated by the use of model simulation, because only a mathematical model is an effective tool for making such multi-criteria analyses. The paper presents an approach for setting criteria that limit the input and output control data, applied by HYDREKO in the process of spatial distribution of disposable groundwater resources. An example of use of this method is presented for the management area P-XVIII Dolna Warta (Rodzoch et al., 2017).


Sign in / Sign up

Export Citation Format

Share Document