Passage of labeled albumin into canine aortic wall in vivo and in vitro

1961 ◽  
Vol 200 (3) ◽  
pp. 622-624 ◽  
Author(s):  
Leroy E. Duncan ◽  
Katherin Buck

The passage of labeled albumin into canine aortic wall in vivo and in vitro was studied. In vivo albumin entered the inner layer fastest in the ascending aorta and progressively less rapidly down the length of the aorta. In vitro, this gradient was partially preserved since albumin entered the inner layer of ascending aorta faster than that of descending aorta. The gradient was not completely preserved in vitro, since albumin entered the inner layer of abdominal aorta faster than that of descending thoracic aorta. The rapid entrance of albumin into the abdominal portion of the aorta in vitro appears to have been due to the maintenance of arterial blood pressure in the unusually dense capillary network of the abdominal aorta. The partial preservation of the gradient in the isolated aorta excludes phasic variation of intra- or extra-aortic pressure as a cause of the gradient.

2016 ◽  
Vol 11 (4) ◽  
pp. 830 ◽  
Author(s):  
Naveed Aslam ◽  
Khalid Hussain Janbaz ◽  
Qaiser Jabeen

<p class="Abstract">In order to rationalize the traditional uses of <em>Asphodelus </em>tenuifolius in cardiovascular complaints, aqueous-ethanol extract of the plant was investigated for hypotensive and diuretic activities using <em>in vivo</em> and in vitro models. Intravenous administration of the extract in anesthetized rats produced 14.5 (95% CI; 13.3–15.6), 24.5 (95% CI; 21.3-27.9) and 35.3% (95% CI; 32.0–42.5)  fall in mean arterial blood pressure at the doses of 3, 10 and 30 mg/kg, respectively. The extract increased the urine volume and electrolytes excretion significantly at the doses of 300 and 500 mg/kg in rats. In rabbit’s isolated aorta preparations, the extract, like verapamil, relaxed K<sup>+ </sup>(80 mM)-induced contractions more potently than phenylephrine (1 µM)–induced contractions, indicating Ca<sup>2+</sup> antagonistic activity. The extract produced dose-dependent stimulant followed by depressant effects in spontaneously contracting rabbit’s paired atria preparations. The results suggest that the extract of <em>A. </em>tenuifolius has hypotensive and diuretic effects in animals.</p><p> </p>


2021 ◽  
Author(s):  
Chiara Camillo ◽  
Alexey Abramov ◽  
Philip M Allen ◽  
Estibaliz Castillero ◽  
Emilia Roberts ◽  
...  

Background: Aortic dissection and aneurysm are the result of altered biomechanical forces associated with structural weakening of the aortic wall caused by genetic or acquired factors. Current guidelines recommend replacement of the ascending aorta when the diameter is >5.5 cm in tricuspid aortic valve patients. Aortopathies are associated with altered wall stress and stiffness as well as endothelial cell dysfunction and synthetic vascular smooth muscle cell (VSMC) phenotype. We reported that these mechanisms are mediated by glycoxidation products [Reactive oxygen species (ROS) and Advance Glycation End products (AGE)]. This study addresses the role of glycoxidation on endothelial function and AGE-mediated aortic stiffness. Hypothesis and aims: Here we investigate how circulating glycation products infiltrate the aortic wall via AGE-mediated endothelial hyperpermeability and contribute to both VSMC synthetic phenotype and extracellular matrix (ECM) remodeling in vivo and ex vivo. We also study how RAGE antagonist peptide (RAP) can rescue the effect of AGEs in vitro and in vivo in eNOS-/- vs WT mice. Methods and results: Human ascending aortas (n=30) were analyzed for AGE, ROS, and ECM markers. In vitro glycation was obtained by treating VSMC or human and murine aortas with glyoxal. Endothelial permeability was measured under glycation treatment. Vascular stiffness was measured by a pressure myograph comparing wild-type mice in the absence of presence of glyoxal. eNOS-/- mice, a model of increased endothelial permeability, were treated for 28 days with hyperlipidemic diet and Angiotensin II (1000ng/kg/min) with or without anti-glycation treatment (RAP 20mg/kg). Echo data of aortic diameter were collected. Murine vascular stiffness was measured by a pressure myograph (n=5/group). Glycoxidation products were detected in all human aortas independently of aortic diameter, with stronger accumulation on the lumen and the adventitia layer. AGEs increased endothelial permeability, induce synthetic phenotypic switch in human VSMCs, and inhibit cell migration. RAP pre-treatment rescue the effect of glyoxal on endothelial cells. Ex vivo glycation treatment of murine arteries impacted on ECM and increased stiffness. Aortic stiffness was higher in eNOS-/- vs WT mice. Ang II-mediated aortopathies results in aortic dilation, and AGE/ROS accumulation, which is rescued by RAGE antagonist peptide treatment of eNOS-/- mice. Conclusions: Glycoxidation reaction mediates EC permeability, VSMCs phenotype, and ECM remodeling leading to dysfunctional microstructure of the ascending aorta, altered vascular stiffness and increasing aortic susceptibility to dilation and rupture. Moreover, we show that RAP can mitigate AGE-mediated endothelial hyper-permeability in vitro and impact on ascending aneurysm in vivo


1991 ◽  
Vol 69 (7) ◽  
pp. 1985-1992 ◽  
Author(s):  
Malcolm E. Forster ◽  
Michael Axelsson ◽  
Anthony P. Farrell ◽  
Stefan Nilsson

The hagfish circulation contains a high volume of blood (180 mL∙kg−1) and is remarkable for the number of accessory pumps. Cardiac output from the branchial heart of hagfishes is comparable to that of elasmobranch and most teleost fishes, but blood pressures are considerably lower than in any other vertebrate group. Cardiac output is extremely sensitive to both venous return and ventral aortic pressure (afterload). Owing to the low arterial blood pressures, myocardial power output is lower than for any other vertebrate heart. The concomitant low energy requirement of the myocardium allows ATP generated anaerobically through glycolysis to maintain cardiac output during severe hypoxia. In vivo and in vitro administration of adrenergic agonists and antagonists increase and decrease cardiac performance, respectively. This suggests that the catecholamines that are stored beneath the endothelium of the branchial and portal hearts are involved in the tonic control of cardiac function.


2011 ◽  
Vol 110 (1) ◽  
pp. 176-187 ◽  
Author(s):  
H. Åstrand ◽  
J. Stålhand ◽  
J. Karlsson ◽  
M. Karlsson ◽  
B. Sonesson ◽  
...  

The mechanical properties of the aorta affect cardiac function and are related to cardiovascular morbidity/mortality. This study was designed to evaluate the isotropic (mainly elastin, elastiniso) and anisotropic (mainly collagen, collagenani) material parameters within the human aorta in vivo. Thirty healthy men and women in three different age categories (23–30, 41–54, and 67–72 yr) were included. A novel mechanical model was used to identify the mechanical properties and the strain field with aid of simultaneously recorded pressure and radius in the abdominal aorta. The magnitudes of the material parameters relating to both the stiffness of elastiniso and collagenani were in agreement with earlier in vitro studies. The load-bearing fraction attributed to collagenani oscillated from 10 to 30% between diastolic and systolic pressures during the cardiac cycle. With age, stiffness of elastiniso increased in men, despite the decrease in elastin content that has been found due to elastolysis. Furthermore, an increase in stiffness of collagenani at high physiological pressure was found. This might be due to increased glycation, as well as changed isoforms of collagen in the aortic wall with age. A marked sex difference was observed, with a much less age-related effect, both on elastiniso and collagenani stiffness in women. Possible factors of importance could be the effect of sex hormones, as well as differing collagen isoforms, between the sexes.


2020 ◽  
Vol 20 (8) ◽  
pp. 1253-1261
Author(s):  
Mourad Akdad ◽  
Mohamed Eddouks

Aims: The present study was performed in order to analyze the antihypertensive activity of Micromeria graeca (L.) Benth. ex Rchb. Background: Micromeria graeca (L.) Benth. ex Rchb is an aromatic and medicinal plant belonging to the Lamiaceae family. This herb is used to treat various pathologies such as cardiovascular disorders. Meanwhile, its pharmacological effects on the cardiovascular system have not been studied. Objective: The present study aimed to evaluate the effect of aqueous extract of aerial parts of Micromeria graeca (AEMG) on the cardiovascular system in normotensive and hypertensive rats. Methods: In this study, the cardiovascular effect of AEMG was evaluated using in vivo and in vitro investigations. In order to assess the acute effect of AEMG on the cardiovascular system, anesthetized L-NAME-hypertensive and normotensive rats received AEMG (100 mg/kg) orally and arterial blood pressure parameters were monitored during six hours. In the sub-chronic study, rats were orally treated for one week, followed by blood pressure assessment during one week of treatment. Blood pressure was measured using a tail-cuff and a computer-assisted monitoring device. In the second experiment, isolated rat aortic ring pre-contracted with Epinephrine (EP) or KCl was used to assess the vasorelaxant effect of AEMG. Results: Oral administration of AEMG (100 mg/kg) provoked a decrease of arterial blood pressure parameters in hypertensive rats. In addition, AEMG induced a vasorelaxant effect in thoracic aortic rings pre-contracted with EP (10 μM) or KCl (80 mM). This effect was attenuated in the presence of propranolol and methylene blue. While in the presence of glibenclamide, L-NAME, nifedipine or Indomethacin, the vasorelaxant effect was not affected. Conclusion: This study showed that Micromeria graeca possesses a potent antihypertensive effect and relaxes the vascular smooth muscle through β-adrenergic and cGMP pathways.


Author(s):  
Mohammed Ajebli ◽  
Mohamed Eddouks

Aims and objective: The aim of the study was to investigate the effect of aqueous aerial part extract of Mentha pulegium L. (Pennyrile) (MPAE) on arterial pressure parameters in rats. Background: Mentha pulegium is a medicinal plant used to treat hypertension in Morocco. Material and methods: In the current study, MPAE was prepared and its antihypertensive activity was pharmacologically investigated. L-NAME-hypertensive and normotensive rats have received orally MPAE (180 and 300 mg/kg) during six hours for the acute experiment and during seven days for the sub-chronic treatment. Thereafter, systolic, diastolic, mean arterial blood pressure and heart rate were evaluated. While, in the in vitro experiment, isolated denuded and intact thoracic aortic rings were suspended in a tissue bath system and the tension changes were recorded. Results: A fall in blood pressure was observed in L-NAME-induced hypertensive treated with MPAE. The extract also produced a dose-dependent relaxation of aorta pre-contracted with NE and KCl. The study showed that the vasorelaxant ability of MPAE seems to be exerted through the blockage of extracellular Ca2+ entry. Conclusion: The results demonstrate that the extract of pennyrile exhibits antihypertensive activity. In addition, the effect may be, at least in part, due to dilation of blood vessels via blockage of Ca2+ channels.


2021 ◽  
Vol 108 (Supplement_3) ◽  
Author(s):  
R J Burgos Lázaro ◽  
N Burgos Frías ◽  
S Serrano-Fiz García ◽  
V Ospina Mosquera ◽  
F Rojo Pérez ◽  
...  

Abstract INTRODUCTION The surgical indication for ascending aortic aneurysms (AAA) is established when the maximum diameter &gt; 50 mm; It responds to Laplace's Law (T wall = P × r / 2e). The aim of the study is to define wall stress in AAA. MATERIAL AND METHODS 218 ascending aortic walls have been studied: 96 from organ donors, and 122 from AAA: Marfán 58 (47.5%), bicuspid aortic valve 26 (21.4%), and atherosclerosis 38 (31.1%). The samples were studied "in vitro", according to the model Young's (relationship between stress and deformed area), by means of the mechanical traction test (Tension = Force / Area). The analysis was performed with the stress-elongation curve (d Tension / d Elongation). RESULTS The stress of the aortic wall, classified from highest to lowest according to pathology and age was: cystic necrosis of the middle layer, arteriosclerosis, age &gt; 60 years, between 35 and 59, and &lt; 34 years. The stress of “control aortas” wall increased directly in relation to the age of the donors. CONCLUSIONS The maximum diameter of the ascending aorta, the patient's type of pathology and age are factors that affect the maximum tension of the aortic wall and resistance, factors that allow differentiation and prediction of the risk of rupture of the AAA. The validation of the results obtained through numerical simulation was significant and the uniaxial analysis has modeled the response of the vessels to their internal pressure.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
John S. Wilson ◽  
Xiaodong Zhong ◽  
Jackson Hair ◽  
W. Robert Taylor ◽  
John N. Oshinski

Regional tissue mechanics play a fundamental role in the patient-specific function and remodeling of the cardiovascular system. Nevertheless, regional in vivo assessments of aortic kinematics remain lacking due to the challenge of imaging the thin aortic wall. Herein, we present a novel application of displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) to quantify the regional displacement and circumferential Green strain of the thoracic and abdominal aorta. Two-dimensional (2D) spiral cine DENSE and steady-state free procession (SSFP) cine images were acquired at 3T at either the infrarenal abdominal aorta (IAA), descending thoracic aorta (DTA), or distal aortic arch (DAA) in a pilot study of six healthy volunteers (22–59 y.o., 4 females). DENSE data were processed with multiple custom noise reduction techniques including time-smoothing, displacement vector smoothing, sectorized spatial smoothing, and reference point averaging to calculate circumferential Green strain across 16 equispaced sectors around the aorta. Each volunteer was scanned twice to evaluate interstudy repeatability. Circumferential Green strain was heterogeneously distributed in all volunteers and locations. The mean spatial heterogeneity index (standard deviation of all sector values divided by the mean strain) was 0.37 in the IAA, 0.28 in the DTA, and 0.59 in the DAA. Mean (homogenized) peak strain by DENSE for each cross section was consistent with the homogenized linearized strain estimated from SSFP cine. The mean difference in peak strain across all sectors following repeat imaging was −0.1±2.3%, with a mean absolute difference of 1.7%. Aortic cine DENSE MRI is a viable noninvasive technique for quantifying heterogeneous regional aortic wall strain and has significant potential to improve patient-specific clinical assessments of numerous aortopathies, as well as to provide the lacking spatiotemporal data required to refine patient-specific computational models of aortic growth and remodeling.


1997 ◽  
Vol 273 (2) ◽  
pp. R527-R539 ◽  
Author(s):  
K. R. Olson ◽  
D. J. Conklin ◽  
A. P. Farrell ◽  
J. E. Keen ◽  
Y. Takei ◽  
...  

Active venous regulation of cardiovascular function is well known in mammals but has not been demonstrated in fish. In the present studies, the natriuretic peptides (NP) rat atrial natriuretic peptide (ANP) and trout ventricular natriuretic peptide (VNP), clearance receptor inhibitor SC-46542, and sodium nitroprusside (SNP) were infused into unanesthetized trout fitted with pressure cannulas in the ventral aorta, dorsal aorta, and ductus Cuvier, and a ventral aorta (VA) flow probe was used to measure cardiac output (CO). In another group, in vivo vascular (venous) capacitance curves were obtained during ANP or SNP infusion. The in vitro effects of NP on vessels and the heart were also examined. ANP, VNP, and SC-46542 decreased central venous pressure (PVen), CO, stroke volume (SV), and gill resistance (RG), whereas systemic resistance (RS) and heart rate (HR) increased. Dorsal aortic pressure (PDA) transiently increased and then fell even though RS remained elevated. ANP decreased mean circulatory filling pressure (MCFP), increased vascular compliance at all blood volumes, and increased unstressed volume in hypovolemic fish. ANP had no direct effect on the heart. ANP responses in vivo were not altered in trout made hypotensive by prior treatment with the angiotensin-converting enzyme inhibitor lisinopril. SNP reduced ventral aortic pressure (PVA), PDA, and RS, increased CO and HR, but did not affect PVen, SV, or RG. SNP slightly decreased MCFP but did not affect compliance or unstressed volume. In vitro, large systemic arteries were more responsive than veins to NP, whereas SNP relaxed both. These results show that, in vivo, NP decrease venous compliance, thereby decreasing venous return, CO, and arterial pressure. Conversely, SNP hypotension is due to decreased RS. This is the first evidence for active regulation of venous capacitance in fish, which probably occurs in small veins or venules. The presence of venous baroreceptors is also suggested.


1994 ◽  
Vol 76 (4) ◽  
pp. 1520-1527 ◽  
Author(s):  
J. E. Moore ◽  
S. E. Maier ◽  
D. N. Ku ◽  
P. Boesiger

In vivo measurements of blood velocity profiles are difficult to obtain and interpret, since the parameters that govern the normally highly complex flow situation may not be fully quantified or understood at the time of measurement. In vitro flow models have been used often to better understand vascular hemodynamics. The assumptions made in the design of these models limit the applicability of the results. In this study, in vitro flow measurements made in a carefully designed model of the abdominal aorta were compared with in vivo measurements obtained with magnetic resonance imaging. In the suprarenal aorta, the velocity profiles were mostly forward and axisymmetric in both the in vitro and in vivo cases. In the infrarenal aorta, there was extensive flow reversal noted near the posterior wall in both cases. In the aortic bifurcation, two peaks of flow reversal were noted near the lateral posterior walls, and M-shaped velocity profiles were observed in late diastole. The in vitro and in vivo measurements exhibited good qualitative agreement. The in vitro model was accurate in modeling the in vivo hemodynamics of the abdominal aorta. The complex phenomena observed in vivo were explained on the basis of knowledge gained from the in vitro study.


Sign in / Sign up

Export Citation Format

Share Document