scholarly journals Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension

2019 ◽  
Vol 316 (5) ◽  
pp. L723-L737 ◽  
Author(s):  
Sarah E. Hogan ◽  
Maria Pia Rodriguez Salazar ◽  
John Cheadle ◽  
Rachel Glenn ◽  
Carolina Medrano ◽  
...  

Secreted exosomes are bioactive particles that elicit profound responses in target cells. Using targeted metabolomics and global microarray analysis, we identified a role of exosomes in promoting mitochondrial function in the context of pulmonary arterial hypertension (PAH). Whereas chronic hypoxia results in a glycolytic shift in pulmonary artery smooth muscle cells (PASMCs), exosomes restore energy balance and improve O2 consumption. These results were confirmed in a hypoxia-induced mouse model and a semaxanib/hypoxia rat model of PAH wherein exosomes improved the mitochondrial dysfunction associated with disease. Importantly, exosome exposure increased PASMC expression of pyruvate dehydrogenase (PDH) and glutamate dehydrogenase 1 (GLUD1), linking exosome treatment to the TCA cycle. Furthermore, we show that although prolonged hypoxia induced sirtuin 4 expression, an upstream inhibitor of both GLUD1 and PDH, exosomes reduced its expression. These data provide direct evidence of an exosome-mediated improvement in mitochondrial function and contribute new insights into the therapeutic potential of exosomes in PAH.

2016 ◽  
Vol 64 (4) ◽  
pp. 969.1-969 ◽  
Author(s):  
JR Sysol ◽  
J Chen ◽  
S Singla ◽  
V Natarajan ◽  
RF Machado ◽  
...  

RationalePulmonary arterial hypertension (PAH) is a severe, progressive disease characterized by increased pulmonary arterial pressure and resistance due in part to uncontrolled vascular remodeling. The mechanisms contributing to vascular remodeling in PAH are poorly understood and involve rampant pulmonary artery smooth muscle cell (PASMC) proliferation. We recently demonstrated the important role of sphingosine kinase 1 (SphK1), a lipid kinase producing pro-proliferative sphingosine-1-phosphate (S1P), in the development of pulmonary vascular remodeling in PAH. However, the regulatory processes involved in upregulation of SphK1 in this disease are unknown.ObjectiveIn this study, we aimed to identify novel molecular mechanisms governing the regulation of SphK1 expression, with a focus on microRNA (miR). Using both in vitro studies in pulmonary artery smooth muscle cells (PASMCs) and an in vivo mouse model of experimental hypoxia-mediated pulmonary hypertension (HPH), we explored the role of miR in controlling SphK1 expression in the development of pulmonary vascular remodeling.Methods and ResultsIn silico analysis identified hsa-miR-1-3p (miR-1) as a candidate targeting SphK1. We demonstrate miR-1 is down-regulated by hypoxia in human PASMCs and in lung tissues of mice with HPH, coinciding with upregulation of SphK1 expression. PASMCs isolated from patients with PAH had significantly reduced expression of miR-1. Transfection of human PASMCs with miR-1 mimics significantly attenuated activity of a SphK1-3'-UTR luciferase reporter construct and SphK1 protein expression. miR-1 overexpression in human PASMCs also inhibited proliferation and migration under normoxic and hypoxic conditions, both important in pathogenic vascular remodeling in PAH. Finally, we demonstrated that intravenous administration of miR-1 mimics prevents the development of experimental HPH in mice and attenuates induction of SphK1 in PASMCs.ConclusionThese data demonstrate that miR-1 expression in reduced in PASMCs from PAH patients, is modulated by hypoxia, and regulates the expression of SphK1. Key phenotypic aspects of vascular remodeling are influenced by miR-1 and its overexpression can prevent the development of HPH in mice. These studies further our understanding of the mechanisms underlying pathogenic pulmonary vascular remodeling in PAH and could lead to novel therapeutic targets.Supported by grants NIH/NHLBI R01 HL127342 and R01 HL111656 to RFM, NIH/NHLBI P01 HL98050 and R01 HL127342 to VN, American Heart Association Predoctoral Fellowship (15PRE2190004) to JRS, and NIH/NLHBI NRSA F30 Fellowship (FHL128034A) to JRS.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1781
Author(s):  
Bastien Masson ◽  
David Montani ◽  
Marc Humbert ◽  
Véronique Capuano ◽  
Fabrice Antigny

Pulmonary arterial hypertension (PAH) is a severe and multifactorial disease. PAH pathogenesis mostly involves pulmonary arterial endothelial and pulmonary arterial smooth muscle cell (PASMC) dysfunction, leading to alterations in pulmonary arterial tone and distal pulmonary vessel obstruction and remodeling. Unfortunately, current PAH therapies are not curative, and therapeutic approaches mostly target endothelial dysfunction, while PASMC dysfunction is under investigation. In PAH, modifications in intracellular Ca2+ homoeostasis could partly explain PASMC dysfunction. One of the most crucial actors regulating Ca2+ homeostasis is store-operated Ca2+ channels, which mediate store-operated Ca2+ entry (SOCE). This review focuses on the main actors of SOCE in human and experimental PASMC, their contribution to PAH pathogenesis, and their therapeutic potential in PAH.


2020 ◽  
Vol 28 ◽  
Author(s):  
Lei Chen ◽  
Ying-Jian Gu ◽  
Ming-Yuan Zhou ◽  
Lin Cheng ◽  
Yun Wang

Background: Pulmonary arterial hypertension is one of the chronic diseases that affect the human health. Microvesicles participate in the communication between cells by fusing with the recipient cells to transfer the bioactive molecules, such as lipids, proteins, RNA, etc., to the target cells. Microvesicles are involved in various biological processes, and have the functions of regulating immunity, promoting angiogenesis and so on. Microvesicles derived from various cells may become diagnostic biomarkers or therapeutic targets to the diseases. Therefore, exploring the role of microvesicles-mediated cell communication has become a potential therapeutic target to pulmonary arterial hypertension. Objective: It is to clarify the classification, features and mechanism of microvesicles in cell communication, and to discuss the potential important roles of microvesicles-mediated cell communication in pulmonary arterial hypertension. Results: Inflammation is an important the pathogenesis of pulmonary arterial hypertension. Many studies have shown that microvesicles from different cells can participate in the pathological process of PAH by transferring the inflammatory factors contained in them. Conclusion: Microvesicles-mediated cell communication may become the therapeutic target to pulmonary arterial hypertension.


2017 ◽  
Vol 7 (2) ◽  
pp. 285-299 ◽  
Author(s):  
Olivier Boucherat ◽  
Geraldine Vitry ◽  
Isabelle Trinh ◽  
Roxane Paulin ◽  
Steeve Provencher ◽  
...  

Pulmonary arterial hypertension (PAH) remains a mysterious killer that, like cancer, is characterized by tremendous complexity. PAH development occurs under sustained and persistent environmental stress, such as inflammation, shear stress, pseudo-hypoxia, and more. After inducing an initial death of the endothelial cells, these environmental stresses contribute with time to the development of hyper-proliferative and apoptotic resistant clone of cells including pulmonary artery smooth muscle cells, fibroblasts, and even pulmonary artery endothelial cells allowing vascular remodeling and PAH development. Molecularly, these cells exhibit many features common to cancer cells offering the opportunity to exploit therapeutic strategies used in cancer to treat PAH. In this review, we outline the signaling pathways and mechanisms described in cancer that drive PAH cells’ survival and proliferation and discuss the therapeutic potential of antineoplastic drugs in PAH.


2018 ◽  
Vol 19 (12) ◽  
pp. 4081 ◽  
Author(s):  
Kimio Satoh ◽  
Nobuhiro Kikuchi ◽  
Taijyu Satoh ◽  
Ryo Kurosawa ◽  
Shinichiro Sunamura ◽  
...  

Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are fatal diseases; however, their pathogenesis still remains to be elucidated. We have recently screened novel pathogenic molecules and have performed drug discovery targeting those molecules. Pulmonary artery smooth muscle cells (PASMCs) in patients with PAH (PAH-PASMCs) have high proliferative properties like cancer cells, which leads to thickening and narrowing of distal pulmonary arteries. Thus, we conducted a comprehensive analysis of PAH-PASMCs and lung tissues to search for novel pathogenic proteins. We validated the pathogenic role of the selected proteins by using tissue-specific knockout mice. To confirm its clinical significance, we used patient-derived blood samples to evaluate the potential as a biomarker for diagnosis and prognosis. Finally, we conducted a high throughput screening and found inhibitors for the pathogenic proteins.


2014 ◽  
Vol 307 (3) ◽  
pp. H273-H283 ◽  
Author(s):  
Aiping Liu ◽  
David Schreier ◽  
Lian Tian ◽  
Jens C. Eickhoff ◽  
Zhijie Wang ◽  
...  

Pulmonary arterial hypertension (PAH) results in right ventricular (RV) dysfunction and failure. Paradoxically, women are more frequently diagnosed with PAH but have better RV systolic function and survival rates than men. The mechanisms by which sex differences alter PAH outcomes remain unknown. Here, we sought to study the role of estrogen in RV functional remodeling in response to PAH. The SU5416-hypoxia (SuHx) mouse model of PAH was used. To study the role of estrogen, female mice were ovariectomized and then treated with estrogen or placebo. SuHx significantly increased RV afterload and resulted in RV hypertrophy. Estrogen treatment attenuated the increase in RV afterload compared with the untreated group (effective arterial elastance: 2.3 ± 0.1 mmHg/μl vs. 3.2 ± 0.3 mmHg/μl), and this was linked to preserved pulmonary arterial compliance (compliance: 0.013 ± 0.001 mm2/mmHg vs. 0.010 ± 0.001 mm2/mmHg; P < 0.05) and decreased distal muscularization. Despite lower RV afterload in the estrogen-treated SuHx group, RV contractility increased to a similar level as the placebo-treated SuHx group, suggesting an inotropic effect of estrogen on RV myocardium. Consequently, when compared with the placebo-treated SuHx group, estrogen improved RV ejection fraction and cardiac output (ejection fraction: 57 ± 2% vs. 44 ± 2% and cardiac output: 9.7 ± 0.4 ml/min vs. 7.6 ± 0.6 ml/min; P < 0.05). Our study demonstrates for the first time that estrogen protects RV function in the SuHx model of PAH in mice directly by stimulating RV contractility and indirectly by protecting against pulmonary vascular remodeling. These results underscore the therapeutic potential of estrogen in PAH.


2016 ◽  
Vol 15 (1) ◽  
pp. 12-13
Author(s):  
Adaani E. Frost ◽  
Harrison W. Farber

Dramatic advances in therapy for pulmonary arterial hypertension (PAH) in the last 20 years have improved survival from a median of 2.5 years in the pretreatment era to 7.5 years currently. However, impressive as that may seem, it is important to note that a median survival of 7.5 years is equivalent to that of surgically resected non-small cell lung cancer, thus underscoring the importance of lung transplantation as a treatment option in patients with PAH. In this edition of Advances, Edelman has reviewed the pathway to transplantation for patients with PAH, detailing the recommendations for timing of referral, listing for lung transplantation, the role of the lung allocation score in allocating a donor organ, and the outcome of lung transplantation.


Author(s):  
Mustafa Yildiz ◽  
Alparslan Sahin ◽  
Michael Behnes ◽  
İbrahim Akin

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Kyle A. Batton ◽  
Christopher O. Austin ◽  
Katelyn A. Bruno ◽  
Charles D. Burger ◽  
Brian P. Shapiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document