scholarly journals Dung biomass smoke activates inflammatory signaling pathways in human small airway epithelial cells

2016 ◽  
Vol 311 (6) ◽  
pp. L1222-L1233 ◽  
Author(s):  
Claire E. McCarthy ◽  
Parker F. Duffney ◽  
Robert Gelein ◽  
Thomas H. Thatcher ◽  
Alison Elder ◽  
...  

Animal dung is a biomass fuel burned by vulnerable populations who cannot afford cleaner sources of energy, such as wood and gas, for cooking and heating their homes. Exposure to biomass smoke is the leading environmental risk for mortality, with over 4,000,000 deaths each year worldwide attributed to indoor air pollution from biomass smoke. Biomass smoke inhalation is epidemiologically associated with pulmonary diseases, including chronic obstructive pulmonary disease (COPD), lung cancer, and respiratory infections, especially in low and middle-income countries. Yet, few studies have examined the mechanisms of dung biomass smoke-induced inflammatory responses in human lung cells. Here, we tested the hypothesis that dung biomass smoke causes inflammatory responses in human lung cells through signaling pathways involved in acute and chronic lung inflammation. Primary human small airway epithelial cells (SAECs) were exposed to dung smoke at the air-liquid interface using a newly developed, automated, and reproducible dung biomass smoke generation system. The examination of inflammatory signaling showed that dung biomass smoke increased the production of several proinflammatory cytokines and enzymes in SAECs through activation of the activator protein (AP)-1 and arylhydrocarbon receptor (AhR) but not nuclear factor-κB (NF-κB) pathways. We propose that the inflammatory responses of lung cells exposed to dung biomass smoke contribute to the development of respiratory diseases.

2018 ◽  
Vol 314 (3) ◽  
pp. L514-L527 ◽  
Author(s):  
Qun Wu ◽  
Di Jiang ◽  
Niccolette R. Schaefer ◽  
Laura Harmacek ◽  
Brian P. O’Connor ◽  
...  

Human rhinovirus (HRV) is the most common virus contributing to acute exacerbations of chronic obstructive pulmonary disease (COPD) nearly year round, but the mechanisms have not been well elucidated. Recent clinical studies suggest that high levels of growth differentiation factor 15 (GDF15) protein in the blood are associated with an increased yearly rate of all-cause COPD exacerbations. Therefore, in the current study, we investigated whether GDF15 promotes HRV infection and virus-induced lung inflammation. We first examined the role of GDF15 in regulating host defense and HRV-induced inflammation using human GDF15 transgenic mice and cultured human GDF15 transgenic mouse tracheal epithelial cells. Next, we determined the effect of GDF15 on viral replication, antiviral responses, and inflammation in human airway epithelial cells with GDF15 knockdown and HRV infection. Finally, we explored the signaling pathways involved in airway epithelial responses to HRV infection in the context of GDF15. Human GDF15 protein overexpression in mice led to exaggerated inflammatory responses to HRV, increased infectious particle release, and decreased IFN-λ2/3 (IL-28A/B) mRNA expression in the lung. Moreover, GDF15 facilitated HRV replication and inflammation via inhibiting IFN-λ1/IL-29 protein production in human airway epithelial cells. Lastly, Smad1 cooperated with interferon regulatory factor 7 (IRF7) to regulate airway epithelial responses to HRV infection partly via GDF15 signaling. Our results reveal a novel function of GDF15 in promoting lung HRV infection and virus-induced inflammation, which may be a new mechanism for the increased susceptibility and severity of respiratory viral (i.e., HRV) infection in cigarette smoke-exposed airways with GDF15 overproduction.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Boning Gao ◽  
Chunxian Huang ◽  
James P Sullivan ◽  
Monica spinola ◽  
Maria Gabriela Raso ◽  
...  

2019 ◽  
Vol 6 (7) ◽  
pp. 2152-2170 ◽  
Author(s):  
Chayanin Kiratipaiboon ◽  
Todd A. Stueckle ◽  
Rajib Ghosh ◽  
Liying W. Rojanasakul ◽  
Yi Charlie Chen ◽  
...  

Carbon nanomaterials and asbestos fibers induce genotoxicity and cancer stem cell-like transformation in human small airway epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document