TRPV1 receptors mediate particulate matter-induced apoptosis

2004 ◽  
Vol 286 (3) ◽  
pp. L563-L572 ◽  
Author(s):  
N. Agopyan ◽  
J. Head ◽  
S. Yu ◽  
S. A. Simon

Exposure to airborne particulate matter (PM) is a world-wide health problem mainly because it produces adverse cardiovascular and respiratory effects that frequently result in morbidity. Despite many years of epidemiological and basic research, the mechanisms underlying PM toxicity remain largely unknown. To understand some of these mechanisms, we measured PM-induced apoptosis and necrosis in normal human airway epithelial cells and sensory neurons from both wild-type mice and mice lacking TRPV1 receptors using Alexa Fluor 488-conjugated annexin V and propidium iodide labeling, respectively. Exposure of environmental PMs containing residual oil fly ash and ash from Mount St. Helens was found to induce apoptosis, but not necrosis, as a consequence of sustained calcium influx through TRPV1 receptors. Apoptosis was completely prevented by inhibiting TRPV1 receptors with capsazepine or by removing extracellular calcium or in sensory neurons from TRPV1(-/-) mice. Binding of either one of the PMs to the cell membrane induced a capsazepine-sensitive increase in cAMP. PM-induced apoptosis was augmented upon the inhibition of PKA. PKA inhibition on its own also induced apoptosis, thereby suggesting that this pathway may be endogenously protective against apoptosis. In summary, it was found that inhibiting TRPV1 receptors prevents PM-induced apoptosis, thereby providing a potential mechanism to reduce their toxicity.

2002 ◽  
Vol 11 (3) ◽  
pp. 141-148 ◽  
Author(s):  
Shahida Shahana ◽  
Caroline Kampf ◽  
Godfried M. Roomans

Background: Allergic asthma is associated with an increased number of eosinophils in the airway wall. Eosinophils secrete cationic proteins, particularly major basic protein (MBP).Aim: To investigate the effect of synthetic cationic polypeptides such as poly-L-arginine, which can mimic the effect of MBP, on airway epithelial cells.Methods: Cultured airway epithelial cells were exposed to poly-L-arginine, and effects were determined by light and electron microscopy.Results: Poly-L-arginine induced apoptosis and necrosis. Transmission electron microscopy showed mitochondrial damage and changes in the nucleus. The tight junctions were damaged, as evidenced by penetration of lanthanum. Scanning electron microscopy showed a damaged cell membrane with many pores. Microanalysis showed a significant decrease in the cellular content of magnesium, phosphorus, sodium, potassium and chlorine, and an increase in calcium. Plakoglobin immunoreactivity in the cell membrane was decreased, indicating a decrease in the number of desmosomes.Conclusions: The results point to poly-L-arginine induced membrane damage, resulting in increased permeability, loss of cell-cell contacts and generalized cell damage.


Respirology ◽  
2009 ◽  
Vol 14 (7) ◽  
pp. 1027-1034 ◽  
Author(s):  
Motoki YOSHIDA ◽  
Katsutoshi NAKAYAMA ◽  
Hiroyasu YASUDA ◽  
Hiroshi KUBO ◽  
Kazuyoshi KUWANO ◽  
...  

2013 ◽  
Vol 114 (2) ◽  
pp. 210-216 ◽  
Author(s):  
Lisa Alenmyr ◽  
Lena Uller ◽  
Lennart Greiff ◽  
Edward D. Högestätt ◽  
Peter M. Zygmunt

2008 ◽  
Vol 82 (6) ◽  
pp. 2741-2751 ◽  
Author(s):  
W. Y. Lam ◽  
Julian W. Tang ◽  
Apple C. M. Yeung ◽  
Lawrence C. M. Chiu ◽  
Joseph J. Y. Sung ◽  
...  

ABSTRACT Avian H5N1 influenza virus causes a remarkably severe disease in humans, with an overall case fatality rate of greater than 50%. Human influenza A viruses induce apoptosis in infected cells, which can lead to organ dysfunction. To verify the role of H5N1-encoded NS1 in inducing apoptosis, the NS1 gene was cloned and expressed in human airway epithelial cells (NCI-H292 cells). The apoptotic events posttransfection were examined by a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end-labeling assay, flow cytometric measurement of propidium iodide, annexin V staining, and Western blot analyses with antibodies specific for proapoptotic and antiapoptotic proteins. We demonstrated that the expression of H5N1 NS1 protein in NCI-H292 cells was sufficient to induce apoptotic cell death. Western blot analyses also showed that there was prominent cleavage of poly(ADP-ribose) polymerase and activation of caspase-3, caspase-7, and caspase-8 during the NS1-induced apoptosis. The results of caspase inhibitor assays further confirmed the involvement of caspase-dependent pathways in the NS1-induced apoptosis. Interestingly, the ability of H5N1 NS1 protein to induce apoptosis was much enhanced in cells pretreated with Fas ligand (the time posttransfection required to reach >30% apoptosis was reduced from 24 to 6 h). Furthermore, 24 h posttransfection, an increase in Fas ligand mRNA expression of about 5.6-fold was detected in cells transfected with H5N1 NS1. In conclusion, we demonstrated that the NS1 protein encoded by avian influenza A virus H5N1 induced apoptosis in human lung epithelial cells, mainly via the caspase-dependent pathway, which encourages further investigation into the potential for the NS1 protein to be a novel therapeutic target.


2009 ◽  
Vol 40 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Yutong Zhao ◽  
Peter V. Usatyuk ◽  
Irina A. Gorshkova ◽  
Donghong He ◽  
Ting Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document