scholarly journals Short-chain fatty acids increase TNFα-induced inflammation in primary human lung mesenchymal cells through the activation of p38 MAPK

2019 ◽  
Vol 316 (1) ◽  
pp. L157-L174 ◽  
Author(s):  
Sandra Rutting ◽  
Dia Xenaki ◽  
Monique Malouf ◽  
Jay C. Horvat ◽  
Lisa G. Wood ◽  
...  

Short-chain fatty acids (SCFAs), produced as by-products of dietary fiber metabolism by gut bacteria, have anti-inflammatory properties and could potentially be used for the treatment of inflammatory diseases, including asthma. The direct effects of SCFAs on inflammatory responses in primary human lung mesenchymal cells have not been assessed. We investigated whether SCFAs can protect against tumor necrosis factor (TNF)α-induced inflammation in primary human lung fibroblasts (HLFs) and airway smooth muscle (ASM) cells in vitro. HLFs and ASM cells were exposed to SCFAs, acetate (C2:0), propionate (C3:0), and butyrate (C4:0) (0.01–25 mM) with or without TNFα, and the release of proinflammatory cytokines, IL-6, and CXCL8 was measured using ELISA. We found that none of the SCFAs suppressed TNFα-induced cytokine release. On the contrary, challenge with supraphysiological concentrations (10–25 mM), as might be used therapeutically, of propionate or butyrate in combination with TNFα resulted in substantially greater IL-6 and CXCL8 release from HLFs and ASM cells than challenge with TNFα alone, demonstrating synergistic effects. In ASM cells, challenge with acetate also enhanced TNFα-induced IL-6, but not CXCL8 release. Synergistic upregulation of IL-6 and CXCL8 was mediated through the activation of free fatty acid receptor (FFAR)3, but not FFAR2. The signaling pathways involved were further examined using specific inhibitors and immunoblotting, and responses were found to be mediated through p38 MAPK signaling. This study demonstrates that proinflammatory, rather than anti-inflammatory effects of SCFAs are evident in lung mesenchymal cells.

2016 ◽  
Vol 25 ◽  
pp. 511-522 ◽  
Author(s):  
Javier Fernández ◽  
Saúl Redondo-Blanco ◽  
Ignacio Gutiérrez-del-Río ◽  
Elisa M. Miguélez ◽  
Claudio J. Villar ◽  
...  

Life Sciences ◽  
2003 ◽  
Vol 73 (13) ◽  
pp. 1683-1690 ◽  
Author(s):  
Claudia R Cavaglieri ◽  
Anita Nishiyama ◽  
Luis Claudio Fernandes ◽  
Rui Curi ◽  
Elizabeth A Miles ◽  
...  

2020 ◽  
Vol 26 (6) ◽  
pp. 452-468 ◽  
Author(s):  
Hope Eveline Carter Moylan ◽  
Caitlyn Nguyen-Ngo ◽  
Ratana Lim ◽  
Martha Lappas

Abstract Spontaneous preterm birth is a global health issue affecting up to 20% of pregnancies and leaves a legacy of neurodevelopmental complications. Inflammation has been implicated in a significant proportion of preterm births, where pro-inflammatory insults trigger production of additional pro-inflammatory and pro-labor mediators. Thus, novel therapeutics that can target inflammation may be a novel avenue for preventing preterm birth and improving adverse fetal outcomes. Short-chain fatty acids (SCFAs), such as butyrate and propionate, are dietary metabolites produced by bacterial fermentation of fiber in the gut. SCFAs are known to possess anti-inflammatory properties and have been found to function through G-coupled-receptors and histone deacetylases. Therefore, this study aimed to investigate the effect of SCFAs on pro-inflammatory and pro-labor mediators in an in vitro model of preterm birth. Primary human cells isolated from myometrium and fetal membranes (decidua, amnion mesenchymal and amnion epithelial cells) were stimulated with the pro-inflammatory cytokines tumor necrosis factor alpha (TNF) or interleukin 1B (IL1B). The SCFAs butyrate and propionate suppressed inflammation-induced expression of pro-inflammatory cytokines and chemokines, adhesion molecules, the uterotonic prostaglandin PGF2alpha and enzymes involved in remodeling of myometrium and degradation of the fetal membranes. Notably, propionate and butyrate also suppressed inflammation-induced prostaglandin signaling and myometrial cell contraction. These effects appear to be mediated through suppression of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation. These results suggest that the SCFAs may be able to prevent myometrial contractions and rupture of membranes. Further in vivo studies are warranted to identify the efficacy of SCFAs as a novel anti-inflammatory therapeutic to prevent inflammation-induced spontaneous preterm birth.


1990 ◽  
Vol 161 (1) ◽  
pp. 138-142 ◽  
Author(s):  
C. Eftimiadi ◽  
M. Tonetti ◽  
A. Cavallero ◽  
O. Sacco ◽  
G. A. Rossi

2010 ◽  
Vol 1 (4) ◽  
pp. 433-437 ◽  
Author(s):  
H. Roelofsen ◽  
M. Priebe ◽  
R. Vonk

Short chain fatty acids (SCFA) are the main bacterial metabolites of colonic fermentation processes. The physiological relevance of the SCFA for the host outside the gastrointestinal tract is getting increased attention. In this review we will focus on the effect of SCFA on inflammation processes in the host in relation to insulin resistance. Obesity has been associated with a pro-inflammatory state of the adipose tissue that is associated with whole body insulin resistance leading to type 2 diabetes. Recently, two G protein-coupled receptors (GPCR) for SCFA, GPCR 41 and GPCR43, were described that are mainly expressed by immune cells but also by adipose tissue. Propionate can induce the satiety hormone leptin and reduce expression of inflammatory cytokines and chemokines indicating that SCFA have anti-inflammatory effects in human adipose tissue. In addition, in human nutritional experiments we observed that whole grain products could counteract a glucose-induced tumour necrosis factor α and interleukin-6 increase which was associated with increased plasma butyrate concentrations. This suggests that dietary fibre can produce a SCFA profile that could have anti-inflammatory effects in the body. The physiological relevance of these observations especially in relation to obesity-associated inflammation and insulin resistance is discussed.


2018 ◽  
Vol 831 ◽  
pp. 52-59 ◽  
Author(s):  
Meng Li ◽  
Betty C.A.M. van Esch ◽  
Gerry T.M. Wagenaar ◽  
Johan Garssen ◽  
Gert Folkerts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document